

TT H E H E WW I N D O W SI N D O W S OO P E R A T I N G P E R A T I N G SS Y S T E MY S T E M

William Stallings
Copyright 2008

 This document is an extract from

 Operating Systems: Internals and Design Principles, Sixth Edition

 William Stallings

 Prentice Hall 2008

 ISBN-10: 0-13-600632-9 ISBN-13: 978-0-13-600632-9

 http://williamstallings.com/OS/OS6e.html

80 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

secondary memory, and other I/O modules. A distributed operating system provides
the illusion of a single main memory space and a single secondary memory space,
plus other unified access facilities, such as a distributed file system.Although clusters
are becoming increasingly popular, and there are many cluster products on the mar-
ket, the state of the art for distributed operating systems lags that of uniprocessor
and SMP operating systems. We examine such systems in Part Eight.

Another innovation in OS design is the use of object-oriented technologies.
Object-oriented design lends discipline to the process of adding modular extensions
to a small kernel.At the OS level, an object-based structure enables programmers to
customize an OS without disrupting system integrity. Object orientation also eases
the development of distributed tools and full-blown distributed operating systems.

2.5 MICROSOFT WINDOWS OVERVIEW

History

The story of Windows begins with a very different OS, developed by Microsoft for
the first IBM personal computer and referred to as MS-DOS or PC-DOS. The ini-
tial version, DOS 1.0, was released in August 1981. It consisted of 4000 lines of as-
sembly language source code and ran in 8 Kbytes of memory using the Intel 8086
microprocessor.

When IBM developed a hard disk-based personal computer, the PC XT,
Microsoft developed DOS 2.0, released in 1983. It contained support for the hard disk
and provided for hierarchical directories. Heretofore, a disk could contain only one
directory of files, supporting a maximum of 64 files. While this was adequate in the
era of floppy disks, it was too limited for a hard disk, and the single-directory restric-
tion was too clumsy. This new release allowed directories to contain subdirectories
as well as files. The new release also contained a richer set of commands embedded
in the OS to provide functions that had to be performed by external programs pro-
vided as utilities with Release 1. Among the capabilities added were several UNIX-
like features, such as I/O redirection, which is the ability to change the input or
output identity for a given application, and background printing. The memory-resi-
dent portion grew to 24 Kbytes.

When IBM announced the PC AT in 1984, Microsoft introduced DOS 3.0.The
AT contained the Intel 80286 processor, which provided extended addressing and
memory protection features. These were not used by DOS. To remain compatible
with previous releases, the OS simply used the 80286 as a “fast 8086.” The OS did
provide support for new keyboard and hard disk peripherals. Even so, the memory
requirement grew to 36 Kbytes. There were several notable upgrades to the 3.0 re-
lease. DOS 3.1, released in 1984, contained support for networking of PCs. The size
of the resident portion did not change; this was achieved by increasing the amount
of the OS that could be swapped. DOS 3.3, released in 1987, provided support for
the new line of IBM computers, the PS/2. Again, this release did not take advantage
of the processor capabilities of the PS/2, provided by the 80286 and the 32-bit 80386
chips. The resident portion at this stage had grown to a minimum of 46 Kbytes, with
more required if certain optional extensions were selected.

M02_STAL6329_06_SE_C02.QXD 2/22/08 7:02 PM Page 80

2.5 /MICROSOFT WINDOWS OVERVIEW 81

By this time, DOS was being used in an environment far beyond its capabili-
ties. The introduction of the 80486 and then the Intel Pentium chip provided power
and features that could not be exploited by the simple-minded DOS. Meanwhile, be-
ginning in the early 1980s, Microsoft began development of a graphical user inter-
face (GUI) that would be interposed between the user and DOS. Microsoft’s intent
was to compete with Macintosh, whose OS was unsurpassed for ease of use. By
1990, Microsoft had a version of the GUI, known as Windows 3.0, which incorpo-
rated some of the user friendly features of Macintosh. However, it was still ham-
strung by the need to run on top of DOS.

After an abortive attempt by Microsoft to develop with IBM a next-genera-
tion OS, which would exploit the power of the new microprocessors and which
would incorporate the ease-of-use features of Windows, Microsoft struck out on its
own and developed a new OS from the ground up, Windows NT. Windows NT ex-
ploits the capabilities of contemporary microprocessors and provides multitasking
in a single-user or multiple-user environment.

The first version of Windows NT (3.1) was released in 1993, with the same GUI
as Windows 3.1, another Microsoft OS (the follow-on to Windows 3.0). However,
NT 3.1 was a new 32-bit OS with the ability to support older DOS and Windows
applications as well as provide OS/2 support.

After several versions of NT 3.x, Microsoft released NT 4.0. NT 4.0 has essen-
tially the same internal architecture as 3.x. The most notable external change is that
NT 4.0 provides the same user interface as Windows 95 (an enhanced upgrade to
Windows 3.1). The major architectural change is that several graphics components
that ran in user mode as part of the Win32 subsystem in 3.x have been moved into
the Windows NT Executive, which runs in kernel mode.The benefit of this change is
to speed up the operation of these important functions. The potential drawback is
that these graphics functions now have direct access to low-level system services,
which could impact the reliability of the OS.

In 2000, Microsoft introduced the next major upgrade: Windows 2000. Again,
the underlying Executive and Kernel architecture is fundamentally the same as in
NT 4.0, but new features have been added.The emphasis in Windows 2000 is the ad-
dition of services and functions to support distributed processing. The central ele-
ment of Windows 2000’s new features is Active Directory, which is a distributed
directory service able to map names of arbitrary objects to any kind of information
about those objects. Windows 2000 also added the plug-and-play and power-man-
agement facilities that were already in Windows 98, the successor to Windows 95.
These features are particularly important for laptop computers, which frequently
use docking stations and run on batteries.

One final general point to make about Windows 2000 is the distinction be-
tween Windows 2000 Server and Windows 2000 desktop. In essence, the kernel and
executive architecture and services remain the same, but Server includes some ser-
vices required to use as a network server.

In 2001, a new desktop version of Windows was released, known as Windows
XP. Both home PC and business workstation versions of XP were offered. In 2003,
Microsoft introduced a new server version, known as Windows Server 2003, sup-
porting both 32-bit and 64-bit processors. The 64-bit versions of Server 2003 was de-
signed specifically for the 64-bit Intel Itanium hardware. With the first service pack

M02_STAL6329_06_SE_C02.QXD 2/28/08 3:34 AM Page 81

82 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

update for Server 2003, Microsoft introduced support for the AMD64 processor ar-
chitecture for both desktops and servers.

In 2007, the latest desktop version of Windows was released, known as
Windows Vista. Vista supports both the Intel x86 and AMD x64 architectures. The
main features of the release were changes to the GUI and many security improve-
ments. The corresponding server release is Windows Server 2008.

Single-User Multitasking

Windows (from Windows 2000 onward) is a significant example of what has become
the new wave in microcomputer operating systems (other examples are Linux and
MacOS). Windows was driven by a need to exploit the processing capabilities of
today’s 32-bit and 64-bit microprocessors, which rival mainframes of just a few years
ago in speed, hardware sophistication, and memory capacity.

One of the most significant features of these new operating systems is that, al-
though they are still intended for support of a single interactive user, they are multi-
tasking operating systems. Two main developments have triggered the need for
multitasking on personal computers, workstations, and servers. First, with the in-
creased speed and memory capacity of microprocessors, together with the support
for virtual memory, applications have become more complex and interrelated. For
example, a user may wish to employ a word processor, a drawing program, and a
spreadsheet application simultaneously to produce a document. Without multitask-
ing, if a user wishes to create a drawing and paste it into a word processing docu-
ment, the following steps are required:

1. Open the drawing program.

2. Create the drawing and save it in a file or on a temporary clipboard.

3. Close the drawing program.

4. Open the word processing program.

5. Insert the drawing in the correct location.

If any changes are desired, the user must close the word processing program,
open the drawing program, edit the graphic image, save it, close the drawing pro-
gram, open the word processing program, and insert the updated image. This be-
comes tedious very quickly. As the services and capabilities available to users
become more powerful and varied, the single-task environment becomes more
clumsy and user unfriendly. In a multitasking environment, the user opens each ap-
plication as needed, and leaves it open. Information can be moved around among a
number of applications easily. Each application has one or more open windows, and
a graphical interface with a pointing device such as a mouse allows the user to navi-
gate quickly in this environment.

A second motivation for multitasking is the growth of client/server computing.
With client/server computing, a personal computer or workstation (client) and a host
system (server) are used jointly to accomplish a particular application. The two are
linked, and each is assigned that part of the job that suits its capabilities. Client/server
can be achieved in a local area network of personal computers and servers or by
means of a link between a user system and a large host such as a mainframe. An

M02_STAL6329_06_SE_C02.QXD 2/22/08 7:02 PM Page 82

2.5 /MICROSOFT WINDOWS OVERVIEW 83

application may involve one or more personal computers and one or more server
devices. To provide the required responsiveness, the OS needs to support high-speed
networking interfaces and the associated communications protocols and data transfer
architectures while at the same time supporting ongoing user interaction.

The foregoing remarks apply to the desktop versions of Windows. The Server
versions are also multitasking but may support multiple users. They support multi-
ple local server connections as well as providing shared services used by multiple
users on the network. As an Internet server, Windows may support thousands of
simultaneous Web connections.

Architecture

Figure 2.13 illustrates the overall structure of Windows 2000; later releases of Win-
dows, including Vista, have essentially the same structure at this level of detail. Its
modular structure gives Windows considerable flexibility. It is designed to execute

User mode

Kernel mode

Session
manager

System
threads

System service dispatcher

Winlogon

Lsass

Lsass = local security authentication server
POSIX = portable operating system interface
GDI = graphics device interface
DLL = dynamic link libraries

Colored area indicates Executive

System support
processes

Service processes
Applications

Environment
subsystems

Service control
manager

Spooler

Winmgmt.exe

SVChost.exe

User
application

Subsytem DLLs Win32

Ntdll.dll

Windows
explorer

Task manager

(Kernel-mode callable interfaces)
Win32 USER,

GDI

Graphics
drivers

Hardware abstraction layer (HAL)

F
ile sy

stem
 cach

e

O
b
ject m

an
ag

er

P
lu

g
-an

d
-p

lay
m

an
ag

er

P
o
w

er m
an

ag
er

S
ecu

rity
 referen

ce
m

o
n
ito

r

V
irtu

al m
em

o
ry

P
ro

cesses an
d

th
read

s

C
o
n
fig

u
ratio

n
m

an
ag

er (reg
istry

)

L
o
cal p

ro
ced

u
re

call

POSIX

Device
and file
system
drivers

I/O manager

Kernel

Services.exe

Figure 2.13 Windows and Windows Vista Architecture [RUSS05]

M02_STAL6329_06_SE_C02.QXD 2/22/08 7:02 PM Page 83

84 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

on a variety of hardware platforms and supports applications written for a variety of
other operating systems. As of this writing, desktop Windows is only implemented
on the Intel x86 and AMD64 hardware platforms. Windows server also supports the
Intel IA64 (Itanium).

As with virtually all operating systems, Windows separates application-
oriented software from the core OS software.The latter, which includes the Executive,
the Kernel, device drivers, and the hardware abstraction layer, runs in kernel mode.
Kernel mode software has access to system data and to the hardware.The remaining
software, running in user mode, has limited access to system data.

Operating System Organization Windows has a highly modular architec-
ture. Each system function is managed by just one component of the OS. The rest of
the OS and all applications access that function through the responsible component
using standard interfaces. Key system data can only be accessed through the appropri-
ate function. In principle, any module can be removed, upgraded, or replaced without
rewriting the entire system or its standard application program interface (APIs).

The kernel-mode components of Windows are the following:

• Executive: Contains the base OS services, such as memory management, process
and thread management, security, I/O, and interprocess communication.

• Kernel: Controls execution of the processor(s). The Kernel manages thread
scheduling, process switching, exception and interrupt handling, and multi-
processor synchronization. Unlike the rest of the Executive and the user level,
the Kernel’s own code does not run in threads.

• Hardware abstraction layer (HAL): Maps between generic hardware com-
mands and responses and those unique to a specific platform. It isolates the OS
from platform-specific hardware differences.The HAL makes each computer’s
system bus, direct memory access (DMA) controller, interrupt controller, sys-
tem timers, and memory module look the same to the Executive and Kernel
components. It also delivers the support needed for symmetric multiprocessing
(SMP), explained subsequently.

• Device drivers: Dynamic libraries that extend the functionality of the Execu-
tive. These include hardware device drivers that translate user I/O function
calls into specific hardware device I/O requests and software components for
implementing file systems, network protocols, and any other system extensions
that need to run in kernel mode.

• Windowing and graphics system:Implements the graphical user interface (GUI)
functions, such as dealing with windows, user interface controls, and drawing.

The Windows Executive includes components for specific system functions
and provides an API for user-mode software. Following is a brief description of each
of the Executive modules:

• I/O manager: Provides a framework through which I/O devices are accessible
to applications, and is responsible for dispatching to the appropriate device dri-
vers for further processing. The I/O manager implements all the Windows I/O
APIs and enforces security and naming for devices, network protocols, and file
systems (using the object manager). Windows I/O is discussed in Chapter 11.

M02_STAL6329_06_SE_C02.QXD 2/22/08 7:02 PM Page 84

2.5 /MICROSOFT WINDOWS OVERVIEW 85

• Cache manager: Improves the performance of file-based I/O by causing re-
cently referenced file data to reside in main memory for quick access, and by
deferring disk writes by holding the updates in memory for a short time before
sending them to the disk.

• Object manager: Creates, manages, and deletes Windows Executive objects
and abstract data types that are used to represent resources such as processes,
threads, and synchronization objects. It enforces uniform rules for retaining,
naming, and setting the security of objects. The object manager also creates
object handles, which consist of access control information and a pointer to the
object. Windows objects are discussed later in this section.

• Plug-and-play manager: Determines which drivers are required to support a
particular device and loads those drivers.

• Power manager: Coordinates power management among various devices and
can be configured to reduce power consumption by shutting down idle devices,
putting the processor to sleep, and even writing all of memory to disk and shut-
ting off power to the entire system.

• Security reference monitor: Enforces access-validation and audit-generation
rules. The Windows object-oriented model allows for a consistent and uniform
view of security, right down to the fundamental entities that make up the Ex-
ecutive. Thus, Windows uses the same routines for access validation and for
audit checks for all protected objects, including files, processes, address spaces,
and I/O devices. Windows security is discussed in Chapter 15.

• Virtual memory manager: Manages virtual addresses, physical memory, and
the paging files on disk. Controls the memory management hardware and data
structures which map virtual addresses in the process’s address space to physi-
cal pages in the computer’s memory. Windows virtual memory management is
described in Chapter 8.

• Process/thread manager: Creates, manages, and deletes process and thread
objects. Windows process and thread management are described in Chapter 4.

• Configuration manager: Responsible for implementing and managing the sys-
tem registry, which is the repository for both system wide and per-user settings
of various parameters.

• Local procedure call (LPC) facility: Implements an efficient cross-process
procedure call mechanism for communication between local processes imple-
menting services and subsystems. Similar to the remote procedure call (RPC)
facility used for distributed processing.

User-Mode Processes Four basic types of user-mode processes are supported
by Windows:

• Special system processes: User mode services needed to manage the system,
such as the session manager, the authentication subsystem, the service man-
ager, and the logon process

• Service processes:The printer spooler, the event logger, user mode components
that cooperate with device drivers, various network services, and many, many
others. Services are used by both Microsoft and external software developers to

M02_STAL6329_06_SE_C02.QXD 2/22/08 7:02 PM Page 85

86 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

extend system functionality as they are the only way to run background user
mode activity on a Windows system.

• Environment subsystems:Provide different OS personalities (environments).
The supported subsystems are Win32/WinFX and POSIX. Each environment
subsystem includes a subsystem process shared among all applications using the
subsystem and dynamic link libraries (DLLs) that convert the user application
calls to LPC calls on the subsystem process, and/or native Windows calls.

• User applications: Executables (EXEs) and DLLs that provide the functional-
ity users run to make use of the system. EXEs and DLLs are generally tar-
geted at a specific environment subsystems; although some of the programs
that are provided as part of the OS use the native system interfaces (NTAPI).
There is also support for running 16-bit programs written for Windows 3.1 or
MS-DOS.

Windows is structured to support applications written for multiple OS person-
alities. Windows provides this support using a common set of kernel mode compo-
nents that underlie the protected environment subsystems. The implementation of
each subsystem includes a separate process, which contains the shared data struc-
tures, privileges, and Executive object handles needed to implement a particular
personality. The process is started by the Windows Session Manager when the first
application of that type is started. The subsystem process runs as a system user, so
the Executive will protect its address space from processes run by ordinary users.

A protected subsystem provides a graphical or command-line user interface that
defines the look and feel of the OS for a user. In addition, each protected subsystem
provides the API for that particular operating environment. This means that applica-
tions created for a particular operating environment may run unchanged on Windows,
because the OS interface that they see is the same as that for which they were written.

The most important subsystem is Win32. Win32 is the API implemented on
both Windows NT and Windows 95 and later releases of Windows 9x. Many Win32
applications written for the Windows 9x line of operating systems run on NT sys-
tems unchanged. At the release of Windows XP, Microsoft focused on improving
compatibility with Windows 9x so that enough applications (and device drivers)
would run that they could cease any further support for 9x and focus on NT.

The most recent programming API for Windows is WinFX, which is based on
Microsoft’s .NET programming model. WinFX is implemented in Windows as a
layer on top of Win32 and not as a distinct subsystem type

Client/Server Model

The Windows operating system services, the protected subsystems, and the applica-
tions are structured using the client/server computing model, which is a common
model for distributed computing and which is discussed in Part Six. This same archi-
tecture can be adopted for use internal to a single system, as is the case with Windows.

The native NT API is a set of kernel-based services which provide the core ab-
stractions used by the system, such as processes, threads, virtual memory, I/O, and com-
munication. Windows provides a far richer set of services by using the client/server
model to implement functionality in user-mode processes. Both the environment

M02_STAL6329_06_SE_C02.QXD 2/22/08 7:02 PM Page 86

2.5 /MICROSOFT WINDOWS OVERVIEW 87

subsystems and the Windows user-mode services are implemented as processes that
communicate with clients via RPC. Each server process waits for a request from a
client for one of its services (for example, memory services, process creation services, or
networking services). A client, which can be an application program or another server
program, requests a service by sending a message. The message is routed through the
Executive to the appropriate server. The server performs the requested operation and
returns the results or status information by means of another message, which is routed
through the Executive back to the client.

Advantages of a client/server architecture include the following:

• It simplifies the Executive. It is possible to construct a variety of APIs imple-
mented in user-mode servers without any conflicts or duplications in the Exec-
utive. New APIs can be added easily.

• It improves reliability. Each new server runs outside of the kernel, with its own
partition of memory, protected from other servers. A single server can fail
without crashing or corrupting the rest of the OS.

• It provides a uniform means for applications to communicate with services via
RPCs without restricting flexibility. The message-passing process is hidden
from the client applications by function stubs, which are small pieces of code
which wrap the RPC call. When an application makes an API call to an envi-
ronment subsystem or service, the stub in the client application packages the
parameters for the call and sends them as a message to a server subsystem that
implements the call.

• It provides a suitable base for distributed computing. Typically, distributed com-
puting makes use of a client/server model, with remote procedure calls imple-
mented using distributed client and server modules and the exchange of
messages between clients and servers. With Windows, a local server can pass a
message on to a remote server for processing on behalf of local client applica-
tions. Clients need not know whether a request is serviced locally or remotely. In-
deed, whether a request is serviced locally or remotely can change dynamically
based on current load conditions and on dynamic configuration changes.

Threads and SMP

Two important characteristics of Windows are its support for threads and for sym-
metric multiprocessing (SMP), both of which were introduced in Section 2.4.
[RUSS05] lists the following features of Windows that support threads and SMP:

• OS routines can run on any available processor, and different routines can ex-
ecute simultaneously on different processors.

• Windows supports the use of multiple threads of execution within a single
process. Multiple threads within the same process may execute on different
processors simultaneously.

• Server processes may use multiple threads to process requests from more than
one client simultaneously.

• Windows provides mechanisms for sharing data and resources between processes
and flexible interprocess communication capabilities.

M02_STAL6329_06_SE_C02.QXD 2/22/08 7:02 PM Page 87

88 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Windows Objects

Windows draws heavily on the concepts of object-oriented design.This approach fa-
cilitates the sharing of resources and data among processes and the protection of re-
sources from unauthorized access. Among the key object-oriented concepts used by
Windows are the following:

• Encapsulation: An object consists of one or more items of data, called attrib-
utes, and one or more procedures that may be performed on those data, called
services. The only way to access the data in an object is by invoking one of the
object’s services. Thus, the data in the object can easily be protected from
unauthorized use and from incorrect use (e.g., trying to execute a nonexe-
cutable piece of data).

• Object class and instance: An object class is a template that lists the attributes
and services of an object and defines certain object characteristics.The OS can
create specific instances of an object class as needed. For example, there is a
single process object class and one process object for every currently active
process. This approach simplifies object creation and management.

• Inheritance: Although the implementation is hand coded, the Executive uses
inheritance to extend object classes by adding new features. Every Executive
class is based on a base class which specifies virtual methods that support cre-
ating, naming, securing, and deleting objects. Dispatcher objects are Executive
objects that inherit the properties of an event object, so they can use common
synchronization methods. Other specific object types, such as the device class,
allow classes for specific devices to inherit from the base class, and add addi-
tional data and methods.

• Polymorphism: Internally, Windows uses a common set of API functions to
manipulate objects of any type; this is a feature of polymorphism, as defined in
Appendix B. However, Windows is not completely polymorphic because there
are many APIs that are specific to specific object types.

The reader unfamiliar with object-oriented concepts should review Appendix B
at the end of this book.

Not all entities in Windows are objects. Objects are used in cases where data are
intended for user mode access or when data access is shared or restricted.Among the
entities represented by objects are files, processes, threads, semaphores, timers, and
windows. Windows creates and manages all types of objects in a uniform way, via the
object manager.The object manager is responsible for creating and destroying objects
on behalf of applications and for granting access to an object’s services and data.

Each object within the Executive, sometimes referred to as a kernel object (to
distinguish from user-level objects not of concern to the Executive), exists as a mem-
ory block allocated by the kernel and is directly accessible only by kernel mode com-
ponents. Some elements of the data structure (e.g., object name, security parameters,
usage count) are common to all object types, while other elements are specific to a
particular object type (e.g., a thread object’s priority). Because these object data
structures are in the part of each process’s address space accessible only by the ker-
nel, it is impossible for an application to reference these data structures and read or
write them directly. Instead, applications manipulate objects indirectly through the
set of object manipulation functions supported by the Executive. When an object is

M02_STAL6329_06_SE_C02.QXD 2/28/08 3:35 AM Page 88

2.5 /MICROSOFT WINDOWS OVERVIEW 89

created, the application that requested the creation receives back a handle for the
object. In essence a handle is an index into a Executive table containing a pointer to
the referenced object. This handle can then be used by any thread within the same
process to invoke Win32 functions that work with objects, or can be duplicated into
other processes.

Objects may have security information associated with them, in the form of a
Security Descriptor (SD). This security information can be used to restrict access to
the object based on contents of a token object which describes a particular user. For
example, a process may create a named semaphore object with the intent that only
certain users should be able to open and use that semaphore. The SD for the sema-
phore object can list those users that are allowed (or denied) access to the semaphore
object along with the sort of access permitted (read, write, change, etc.).

In Windows, objects may be either named or unnamed.When a process creates
an unnamed object, the object manager returns a handle to that object, and the han-
dle is the only way to refer to it. Named objects are also given a name that other
processes can use to obtain a handle to the object. For example, if process A wishes
to synchronize with process B, it could create a named event object and pass the
name of the event to B. Process B could then open and use that event object. How-
ever, if A simply wished to use the event to synchronize two threads within itself, it
would create an unnamed event object, because there is no need for other processes
to be able to use that event.

There are two categories of objects used by Windows for synchronizing the use
of the processor:

• Dispatcher objects: The subset of Executive objects which threads can wait on
to control the dispatching and synchronization of thread-based system opera-
tions. These are described in Chapter 6.

• Control objects: Used by the Kernel component to manage the operation of
the processor in areas not managed by normal thread scheduling. Table 2.5
lists the Kernel control objects.

Table 2.5 Windows Kernel Control Objects

Asynchronous Procedure Call Used to break into the execution of a specified thread and to cause a procedure
to be called in a specified processor mode.

Deferred Procedure Call Used to postpone interrupt processing to avoid delaying hardware interrupts.
Also used to implement timers and inter-processor communication

Interrupt Used to connect an interrupt source to an interrupt service routine by
means of an entry in an Interrupt Dispatch Table (IDT). Each processor has
an IDT that is used to dispatch interrupts that occur on that processor.

Process Represents the virtual address space and control information necessary for
the execution of a set of thread objects. A process contains a pointer to an
address map, a list of ready threads containing thread objects, a list of
threads belonging to the process, the total accumulated time for all threads
executing within the process, and a base priority.

Thread Represents thread objects, including scheduling priority and quantum, and
which processors the thread may run on.

Profile Used to measure the distribution of run time within a block of code. Both
user and system code can be profiled.

M02_STAL6329_06_SE_C02.QXD 2/29/08 11:35 PM Page 89

90 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Windows is not a full-blown object-oriented OS. It is not implemented in an
object-oriented language. Data structures that reside completely within one Execu-
tive component are not represented as objects. Nevertheless, Windows illustrates
the power of object-oriented technology and represents the increasing trend toward
the use of this technology in OS design.

2.6 TRADITIONAL UNIX SYSTEMS

History

The history of UNIX is an oft-told tale and will not be repeated in great detail here.
Instead, we provide a brief summary.

UNIX was initially developed at Bell Labs and became operational on a PDP-7
in 1970. Some of the people involved at Bell Labs had also participated in the time-
sharing work being done at MIT’s Project MAC. That project led to the development
of first CTSS and then Multics. Although it is common to say that the original UNIX
was a scaled-down version of Multics, the developers of UNIX actually claimed to be
more influenced by CTSS [RITC78]. Nevertheless, UNIX incorporated many ideas
from Multics.

Work on UNIX at Bell Labs, and later elsewhere, produced a series of versions
of UNIX.The first notable milestone was porting the UNIX system from the PDP-7
to the PDP-11. This was the first hint that UNIX would be an operating system for
all computers. The next important milestone was the rewriting of UNIX in the pro-
gramming language C. This was an unheard-of strategy at the time. It was generally
felt that something as complex as an operating system, which must deal with time-
critical events, had to be written exclusively in assembly language. Reasons for this
attitude include the following:

• Memory (both RAM and secondary store) was small and expensive by today’s
standards, so effective use was important. This included various techniques for
overlaying memory with different code and data segments, and self-modifying
code.

• Even though compilers had been available since the 1950s, the computer in-
dustry was generally skeptical of the quality of automatically generated code.
With resource capacity small, efficient code, both in terms of time and space,
was essential.

• Processor and bus speeds were relatively slow, so saving clock cycles could
make a substantial difference in execution time.

The C implementation demonstrated the advantages of using a high-level lan-
guage for most if not all of the system code. Today, virtually all UNIX implementa-
tions are written in C.

These early versions of UNIX were popular within Bell Labs. In 1974, the
UNIX system was described in a technical journal for the first time [RITC74]. This
spurred great interest in the system. Licenses for UNIX were provided to commer-
cial institutions as well as universities. The first widely available version outside Bell
Labs was Version 6, in 1976.The follow-on Version 7, released in 1978, is the ancestor

M02_STAL6329_06_SE_C02.QXD 2/22/08 7:02 PM Page 90

4.4 / WINDOWS THREAD AND SMP MANAGEMENT 185

4.4 WINDOWS THREAD AND SMP MANAGEMENT

Windows process design is driven by the need to provide support for a variety of OS
environments. Processes supported by different OS environments differ in a num-
ber of ways, including the following:

• How processes are named
• Whether threads are provided within processes
• How processes are represented
• How process resources are protected
• What mechanisms are used for interprocess communication and synchronization
• How processes are related to each other

Accordingly, the native process structures and services provided by the Windows
Kernel are relatively simple and general purpose, allowing each OS subsystem to
emulate a particular process structure and functionality. Important characteristics of
Windows processes are the following:

• Windows processes are implemented as objects.
• An executable process may contain one or more threads.
• Both process and thread objects have built-in synchronization capabilities.

Figure 4.12, based on one in [RUSS05], illustrates the way in which a process
relates to the resources it controls or uses. Each process is assigned a security

Process
object

Access
token

Virtual address descriptors

Thread x

File y

Section z

Handle1

Handle2

Handle3

Available
objectsHandle table

Figure 4.12 A Windows Process and Its Resources

M04_STAL6329_06_SE_C04.QXD 2/13/08 2:02 PM Page 185

186 CHAPTER 4 / THREADS, SMP,AND MICROKERNELS

access token, called the primary token of the process. When a user first logs on,
Windows creates an access token that includes the security ID for the user.
Every process that is created by or runs on behalf of this user has a copy of this
access token. Windows uses the token to validate the user’s ability to access se-
cured objects or to perform restricted functions on the system and on secured
objects. The access token controls whether the process can change its own attrib-
utes. In this case, the process does not have a handle opened to its access token.
If the process attempts to open such a handle, the security system determines
whether this is permitted and therefore whether the process may change its own
attributes.

Also related to the process is a series of blocks that define the virtual address
space currently assigned to this process. The process cannot directly modify these
structures but must rely on the virtual memory manager, which provides a memory-
allocation service for the process.

Finally, the process includes an object table, with handles to other objects
known to this process. One handle exists for each thread contained in this object.
Figure 4.12 shows a single thread. In addition, the process has access to a file object
and to a section object that defines a section of shared memory.

Process and Thread Objects

The object-oriented structure of Windows facilitates the development of a general-
purpose process facility.Windows makes use of two types of process-related objects:
processes and threads. A process is an entity corresponding to a user job or applica-
tion that owns resources, such as memory, and opens files.A thread is a dispatchable
unit of work that executes sequentially and is interruptible, so that the processor can
turn to another thread.

Each Windows process is represented by an object whose general structure is
shown in Figure 4.13a. Each process is defined by a number of attributes and encap-
sulates a number of actions, or services, that it may perform. A process will perform
a service when called upon through a set of published interface methods. When
Windows creates a new process, it uses the object class, or type, defined for the
Windows process as a template to generate a new object instance. At the time of
creation, attribute values are assigned. Table 4.3 gives a brief definition of each of
the object attributes for a process object.

A Windows process must contain at least one thread to execute. That thread
may then create other threads. In a multiprocessor system, multiple threads from
the same process may execute in parallel. Figure 4.13b depicts the object structure
for a thread object, and Table 4.4 defines the thread object attributes. Note that
some of the attributes of a thread resemble those of a process. In those cases, the
thread attribute value is derived from the process attribute value. For example, the
thread processor affinity is the set of processors in a multiprocessor system that
may execute this thread; this set is equal to or a subset of the process processor
affinity.

Note that one of the attributes of a thread object is context. This information
enables threads to be suspended and resumed. Furthermore, it is possible to alter
the behavior of a thread by altering its context when it is suspended.

M04_STAL6329_06_SE_C04.QXD 2/13/08 2:02 PM Page 186

4.4 / WINDOWS THREAD AND SMP MANAGEMENT 187

Process ID
Security descriptor
Base priority
Default processor affinity
Quota limits
Execution time
I/O counters
VM operation counters
Exception/debugging ports
Exit status

Create process
Open process
Query process information
Set process information
Current process
Terminate process

ProcessObject type

Object body
attributes

Services

Thread ID
Thread context
Dynamic priority
Base priority
Thread processor affinity
Thread execution time
Alert status
Suspension count
Impersonation token
Termination port
Thread exit status

Create thread
Open thread
Query thread information
Set thread information
Current thread
Terminate thread
Get context
Set context
Suspend
Resume
Alert thread
Test thread alert
Register termination port

ThreadObject type

Object body
attributes

Services

(a) Process object

(b) Thread object

Figure 4.13 Windows Process and Thread Objects

Multithreading

Windows supports concurrency among processes because threads in different
processes may execute concurrently. Moreover, multiple threads within the same
process may be allocated to separate processors and execute simultaneously.A mul-
tithreaded process achieves concurrency without the overhead of using multiple
processes. Threads within the same process can exchange information through their
common address space and have access to the shared resources of the process.
Threads in different processes can exchange information through shared memory
that has been set up between the two processes.

An object-oriented multithreaded process is an efficient means of implementing
a server application. For example, one server process can service a number of clients.

Thread States

An existing Windows thread is in one of six states (Figure 4.14):

• Ready: May be scheduled for execution. The Kernel dispatcher keeps track of
all ready threads and schedules them in priority order.

M04_STAL6329_06_SE_C04.QXD 2/13/08 2:02 PM Page 187

188 CHAPTER 4 / THREADS, SMP,AND MICROKERNELS

• Standby: A standby thread has been selected to run next on a particular
processor. The thread waits in this state until that processor is made available.
If the standby thread’s priority is high enough, the running thread on that
processor may be preempted in favor of the standby thread. Otherwise, the
standby thread waits until the running thread blocks or exhausts its time slice.

Table 4.4 Windows Thread Object Attributes

Thread ID A unique value that identifies a thread when it calls a server.

Thread context The set of register values and other volatile data that defines the execution state
of a thread.

Dynamic priority The thread’s execution priority at any given moment.

Base priority The lower limit of the thread’s dynamic priority.

Thread processor affinity The set of processors on which the thread can run, which is a subset or all of the
processor affinity of the thread’s process.

Thread execution time The cumulative amount of time a thread has executed in user mode and in
kernel mode.

Alert status A flag that indicates whether a waiting thread may execute an asynchronous pro-
cedure call.

Suspension count The number of times the thread’s execution has been suspended without being
resumed.

Impersonation token A temporary access token allowing a thread to perform operations on behalf of
another process (used by subsystems).

Termination port An interprocess communication channel to which the process manager sends a
message when the thread terminates (used by subsystems).

Thread exit status The reason for a thread’s termination.

Table 4.3 Windows Process Object Attributes

Process ID A unique value that identifies the process to the operating system.

Security Descriptor Describes who created an object, who can gain access to or use the object, and
who is denied access to the object.

Base priority A baseline execution priority for the process’s threads.

Default processor affinity The default set of processors on which the process’s threads can run.

Quota limits The maximum amount of paged and nonpaged system memory, paging file
space, and processor time a user’s processes can use.

Execution time The total amount of time all threads in the process have executed.

I/O counters Variables that record the number and type of I/O operations that the process’s
threads have performed.

VM operation counters Variables that record the number and types of virtual memory operations that
the process’s threads have performed.

Exception/debugging ports Interprocess communication channels to which the process manager sends a
message when one of the process’s threads causes an exception. Normally
these are connected to environment subsystem and debugger processes,
respectively.

Exit status The reason for a process’s termination.

M04_STAL6329_06_SE_C04.QXD 2/13/08 2:02 PM Page 188

4.4 / WINDOWS THREAD AND SMP MANAGEMENT 189

• Running: Once the Kernel dispatcher performs a thread switch, the standby
thread enters the Running state and begins execution and continues execution
until it is preempted by a higher priority thread, exhausts its time slice, blocks,
or terminates. In the first two cases, it goes back to the ready state.

• Waiting: A thread enters the Waiting state when (1) it is blocked on an event
(e.g., I/O), (2) it voluntarily waits for synchronization purposes, or (3) an envi-
ronment subsystem directs the thread to suspend itself. When the waiting con-
dition is satisfied, the thread moves to the Ready state if all of its resources are
available.

• Transition: A thread enters this state after waiting if it is ready to run but the re-
sources are not available. For example, the thread’s stack may be paged out of
memory. When the resources are available, the thread goes to the Ready state.

• Terminated: A thread can be terminated by itself, by another thread, or when
its parent process terminates. Once housekeeping chores are completed, the
thread is removed from the system, or it may be retained by the executive9 for
future reinitialization.

Support for OS Subsystems

The general-purpose process and thread facility must support the particular process
and thread structures of the various OS clients. It is the responsibility of each OS

Runnable

Not runnable

Pick to
run Switch

Preempted

Block/
suspend

Unblock/resume
Resource available

Resource
available

Unblock
Resource not available

Terminate

Standby

Ready Running

Transition Waiting Terminated

Figure 4.14 Windows Thread States

9The Windows executive is described in Chapter 2. It contains the base operating system services, such as
memory management, process and thread management, security, I/O, and interprocess communication.

M04_STAL6329_06_SE_C04.QXD 2/13/08 2:02 PM Page 189

190 CHAPTER 4 / THREADS, SMP,AND MICROKERNELS

subsystem to exploit the Windows process and thread features to emulate the
process and thread facilities of its corresponding OS. This area of process/thread
management is complicated, and we give only a brief overview here.

Process creation begins with a request for a new process from an application.
The application issues a create-process request to the corresponding protected sub-
system, which passes the request to the Windows executive. The executive creates a
process object and returns a handle to that object to the subsystem. When Windows
creates a process, it does not automatically create a thread. In the case of Win32, a
new process is always created with a thread. Therefore, for these operating systems,
the subsystem calls the Windows process manager again to create a thread for the
new process, receiving a thread handle back from Windows. The appropriate thread
and process information are then returned to the application. In the case of 16-bit
Windows and POSIX, threads are not supported.Therefore, for these operating sys-
tems, the subsystem obtains a thread for the new process from Windows so that the
process may be activated but returns only process information to the application.
The fact that the application process is implemented using a thread is not visible to
the application.

When a new process is created in Win32, the new process inherits many of
its attributes from the creating process. However, in the Windows environment,
this process creation is done indirectly. An application client process issues its
process creation request to the OS subsystem; then a process in the subsystem in
turn issues a process request to the Windows executive. Because the desired effect is
that the new process inherits characteristics of the client process and not of the serv-
er process, Windows enables the subsystem to specify the parent of the new process.
The new process then inherits the parent’s access token, quota limits, base priority,
and default processor affinity.

Symmetric Multiprocessing Support

Windows supports an SMP hardware configuration.The threads of any process, in-
cluding those of the executive, can run on any processor. In the absence of affinity
restrictions, explained in the next paragraph, the microkernel assigns a ready
thread to the next available processor. This assures that no processor is idle or is
executing a lower-priority thread when a higher-priority thread is ready. Multiple
threads from the same process can be executing simultaneously on multiple
processors.

As a default, the microkernel uses the policy of soft affinity in assigning
threads to processors: The dispatcher tries to assign a ready thread to the same
processor it last ran on. This helps reuse data still in that processor’s memory caches
from the previous execution of the thread. It is possible for an application to restrict
its thread execution to certain processors (hard affinity).

4.5 SOLARIS THREAD AND SMP MANAGEMENT

Solaris implements multilevel thread support designed to provide considerable flex-
ibility in exploiting processor resources.

M04_STAL6329_06_SE_C04.QXD 2/13/08 2:02 PM Page 190

298 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

threads waiting for the mutex, the condition that caused the wait must be retested.
Thus, typical usage is as follows:

mutex_enter(&m)
* *
while (some_condition) {
cv_wait(&cv, &m);

}
* *
mutex_exit(&m);

This allows the condition to be a complex expression, because it is protected
by the mutex.

6.10 WINDOWS CONCURRENCY MECHANISMS

Windows provides synchronization among threads as part of the object architecture.
The most important methods of synchronization are Executive dispatcher objects,
user mode critical sections, slim reader-writer locks, and condition variables. Dis-
patcher objects make use of wait functions.We first describe wait functions and then
look at the synchronization methods.

Wait Functions

The wait functions allow a thread to block its own execution. The wait functions do
not return until the specified criteria have been met. The type of wait function deter-
mines the set of criteria used. When a wait function is called, it checks whether the
wait criteria have been met. If the criteria have not been met, the calling thread en-
ters the wait state. It uses no processor time while waiting for the criteria to be met.

The most straightforward type of wait function is one that waits on a single ob-
ject. The WaitForSingleObject function requires a handle to one synchroniza-
tion object. The function returns when one of the following occurs:

• The specified object is in the signaled state.
• The time-out interval elapses.The time-out interval can be set to INFINITE to

specify that the wait will not time out.

Dispatcher Objects

The mechanism used by the Windows Executive to implement synchronization fa-
cilities is the family of dispatcher objects, which are listed with brief descriptions in
Table 6.7.

The first five object types in the table are specifically designed to support syn-
chronization. The remaining object types have other uses but also may be used for
synchronization.

Each dispatcher object instance can be in either a signaled or unsignaled state.A
thread can be blocked on an object in an unsignaled state; the thread is released when
the object enters the signaled state.The mechanism is straightforward:A thread issues

M06_STAL6329_06_SE_C06.QXD 2/21/08 9:29 PM Page 298

6.10 / WINDOWS CONCURRENCY MECHANISMS 299

WINDOWS/LINUX COMPARISON
Windows Linux

Common synchronization primitives, such as sema-
phores, mutexes, spinlocks, timers, based on an un-
derlying wait/signal mechanism

Many kernel objects are also dispatcher objects,
meaning that threads can synchronize with them
using a common event mechanism, available at
user-mode. Process and thread termination are
events, I/O completion is an event

Threads can wait on multiple dispatcher objects at
the same time

User-mode reader/writer locks and condition vari-
ables are supported

Many hardware atomic operations, such as atomic
increment/decrement, and compare-and-swap, are
supported

A non-locking atomic LIFO queue, called an
SLIST, is supported using compare-and-swap;
widely used in the OS and also available to user
programs

A large variety of synchronization mechanisms
exist within the kernel to improve scalability. Many
are based on simple compare-and-swap mecha-
nisms, such as push-locks and fast references of
objects

Named pipes, and sockets support remote procedure
calls (RPCs), as does an efficient Local Procedure
Call mechanism (ALPC), used within a local system.
ALPC is used heavily for communicating between
clients and local services

Asynchronous Procedure Calls (APCs) are used
heavily within the kernel to get threads to act upon
themselves (e.g. termination and I/O completion
use APCs since these operations are easier to im-
plement in the context of a thread rather than
cross-thread). APCs are also available for user-
mode, but user-mode APCs are only delivered
when a user-mode thread blocks in the kernel

Hardware support for deferring interrupt processing
until the interrupt level has dropped is provided
by the Deferred Procedure Call (DPC) control
object

Common synchronization primitives, such as sema-
phores, mutexes, spinlocks, timers, based on an un-
derlying sleep/wakeup mechanism

Processes can use the select() system call to wait on
I/O from up to 64 file descriptors

User-mode reader/writer locks and condition vari-
ables are supported

Many hardware atomic operations, such as atomic
increment/decrement, and compare-and-swap, are
supported

Named pipes, and sockets support remote proce-
dure calls (RPCs)

Unix supports a general signal mechanism for com-
munication between processes. Signals are modeled
on hardware interrupts and can be delivered at any
time that they are not blocked by the receiving
process; like with hardware interrupts, signal
semantics are complicated by multi-threading

Uses tasklets to defer interrupt processing until the
interrupt level has dropped

M06_STAL6329_06_SE_C06.QXD 2/28/08 4:00 AM Page 299

300 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

a wait request to the Windows Executive, using the handle of the synchronization
object. When an object enters the signaled state, the Windows Executive releases
one or all of the thread objects that are waiting on that dispatcher object.

The event object is useful in sending a signal to a thread indicating that a particu-
lar event has occurred. For example, in overlapped input and output, the system sets a
specified event object to the signaled state when the overlapped operation has been
completed.The mutex object is used to enforce mutually exclusive access to a resource,
allowing only one thread object at a time to gain access. It therefore functions as a bi-
nary semaphore. When the mutex object enters the signaled state, only one of the
threads waiting on the mutex is released. Mutexes can be used to synchronize threads
running in different processes. Like mutexes,semaphore objects may be shared by
threads in multiple processes. The Windows semaphore is a counting semaphore. In
essence, the waitable timer object signals at a certain time and/or at regular intervals.

Critical Sections

Critical sections provide a synchronization mechanism similar to that provided by
mutex objects, except that critical sections can be used only by the threads of a sin-
gle process. Event, mutex, and semaphore objects can also be used in a single-
process application, but critical sections provide a much faster, more efficient
mechanism for mutual-exclusion synchronization.

Table 6.7 Windows Synchronization Objects

Set to Signaled State Effect on Waiting
Object Type Definition When Threads

Notification An announcement that Thread sets the event All released
Event a system event has occurred

Synchronization An announcement that a Thread sets the event One thread released
event system event has occurred.

Mutex A mechanism that provides Owning thread or other One thread released
mutual exclusion capabilities; thread releases the mutex
equivalent to a binary semaphore

Semaphore A counter that regulates the Semaphore count drops All released
number of threads that can to zero
use a resource

Waitable timer A counter that records the Set time arrives or time All released
passage of time interval expires

File An instance of an opened file I/O operation completes All released
or I/O device

Process A program invocation, includ- Last thread terminates All released
ing the address space and re-
sources required to run the
program

Thread An executable entity within Thread terminates All released
a process

Note: Shaded rows correspond to objects that exist for the sole purpose of synchronization.

M06_STAL6329_06_SE_C06.QXD 2/21/08 9:29 PM Page 300

6.10 / WINDOWS CONCURRENCY MECHANISMS 301

The process is responsible for allocating the memory used by a critical section.
Typically, this is done by simply declaring a variable of type CRITICAL_SECTION.
Before the threads of the process can use it, initialize the critical section by using the
InitializeCriticalSection or InitializeCriticalSectionAndSp-
inCount function.

A thread uses the EnterCriticalSectionor TryEnterCriticalSection
function to request ownership of a critical section. It uses the LeaveCriticalSect-
ion function to release ownership of a critical section. If the critical section is currently
owned by another thread,EnterCriticalSectionwaits indefinitely for ownership.
In contrast, when a mutex object is used for mutual exclusion, the wait functions accept
a specified time-out interval. TheTryEnterCriticalSectionfunction attempts to
enter a critical section without blocking the calling thread.

Critical sections use a sophisticated algorithm when trying to acquire the
mutex. If the system is a multiprocessor, the code will attempt to acquire a spin-lock.
This works well in situations where the critical section is acquired for only a short
time. Effectively the spinlock optimizes for the case where the thread that currently
owns the critical section is executing on another processor. If the spinlock cannot be
acquired within a reasonable number of iterations, a dispatcher object is used to
block the thread so that the Kernel can dispatch another thread onto the processor.
The dispatcher object is only allocated as a last resort. Most critical sections are
needed for correctness, but in practice are rarely contended. By lazily allocating the
dispatcher object the system saves significant amounts of kernel virtual memory.

Slim Read-Writer Locks and Condition Variables

Windows Vista added a user mode reader-writer. Like critical sections, the reader-
writer lock enters the kernel to block only after attempting to use a spin-lock. It is
slim in the sense that it normally only requires allocation of a single pointer-sized
piece of memory.

To use an SRW a process declares a variable of type SRWLOCK and a calls
InitializeSRWLockto initialize it.Threads call AcquireSRWLockExclusiveor
AcquireSRWLockShared to acquire the lock and ReleaseSRWLockExclusive
or ReleaseSRWLockSharedto release it.

Windows Vista also added condition variables. The process must declare a
CONDITION_VARIABLE and initialize it in some thread by calling
InitializeConditionVariable. Condition variables can be used with either
critical sections or SRW locks, so there are two methods, SleepConditionVar-
iableCS and SleepConditionVariableSRW, which sleep on the specified con-
dition and releases the specified lock as an atomic operation.

There are two wake methods, WakeConditionVariable and
WakeAllConditionVariable, which wake one or all of the sleeping threads, re-
spectively. Condition variables are used as follows:

1. Acquire exclusive lock
2. While (predicate() == FALSE) SleepConditionVariable()
3. Perform the protected operation
4. Release the lock

M06_STAL6329_06_SE_C06.QXD 2/21/08 9:29 PM Page 301

8.5 / WINDOWS MEMORY MANAGEMENT 391

a page has been used in recent times and the less eligible it is for replacement. Thus,
the Linux algorithm is a form of least frequently used policy.

Kernel Memory Allocation

The Linux kernel memory capability manages physical main memory page frames.
Its primary function is to allocate and deallocate frames for particular uses. Possible
owners of a frame include user-space processes (i.e., the frame is part of the virtual
memory of a process that is currently resident in real memory), dynamically allocated
kernel data, static kernel code, and the page cache.7

The foundation of kernel memory allocation for Linux is the page allocation
mechanism used for user virtual memory management. As in the virtual memory
scheme, a buddy algorithm is used so that memory for the kernel can be allocated
and deallocated in units of one or more pages. Because the minimum amount of
memory that can be allocated in this fashion is one page, the page allocator alone
would be inefficient because the kernel requires small short-term memory chunks
in odd sizes. To accommodate these small chunks, Linux uses a scheme known as
slab allocation [BONW94] within an allocated page. On a Pentium/x86 machine, the
page size is 4 Kbytes, and chunks within a page may be allocated of sizes 32, 64, 128,
252, 508, 2040, and 4080 bytes.

The slab allocator is relatively complex and is not examined in detail here; a
good description can be found in [VAHA96]. In essence, Linux maintains a set of
linked lists, one for each size of chunk. Chunks may be split and aggregated in a
manner similar to the buddy algorithm, and moved between lists accordingly.

8.5 WINDOWS MEMORY MANAGEMENT

The Windows virtual memory manager controls how memory is allocated and how
paging is performed. The memory manager is designed to operate over a variety
of platforms and use page sizes ranging from 4 Kbytes to 64 Kbytes. Intel and
AMD64 platforms have 4096 bytes per page and Intel Itanium platforms have
8192 bytes per page.

Windows Virtual Address Map

On 32-bit platforms, each Windows user process sees a separate 32-bit address
space, allowing 4 Gbytes of virtual memory per process. By default, a portion of this
memory is reserved for the operating system, so each user actually has 2 Gbytes of
available virtual address space and all processes share the same 2 Gbytes of system
space. There an option that allows user space to be increased to 3 Gbytes, leaving 1
Gbyte for system space. This feature is intended to support large memory-intensive
applications on servers with multiple gigabytes of RAM, and that the use of the
larger address space can dramatically improve performance for applications such as
decision support or data mining.

7The page cache has properties similar to a disk buffer, described in this chapter, as well as a disk cache,
described in Chapter 11. We defer a discussion of the Linux page cache to Chapter 11.

M08_STAL6329_06_SE_C08.QXD 2/21/08 9:31 PM Page 391

392 CHAPTER 8 / VIRTUAL MEMORY

Windows Linux

Physical Memory dynamically mapped into kernel
address space as needed

Up to 896MB physical memory statically mapped into
kernel address space (32-bit), with rest dynamically
mapped into a fixed 128MB of kernel addresses,
which can include non-contiguous use

Kernel and applications can use x86 large pages for
TLB efficiency

Much of code and data for kernel and drivers is
pageable; initialization code deleted after boot; page
tables are fully pageable

Kernel is non-paged; modules are non-paged, but can
be unloaded

User-mode allocation of virtual addresses separated
from mapping addresses as a view of a physical
object (files, devices, physical memory)

User-mode addresses directly mapped to physical
objects

Physical memory can be allocated to large applica-
tions, and directly managed by efficiently mapping/
unmapping into the address space using Address Win-
dowing Extensions (AWE) – which is much like old-
fashion overlays [not needed with 64-bit]

Copy-on-write support Copy-on-write support

Normal user/kernel split is 2GB/2GB; Windows can
be booted to give 3GB/1GB

Normal user/kernel split is 3GB/1GB; Linux can run
kernel and user in separate address spaces, giving user
up to 4GB

Cache manager manages memory mapping of files
into kernel address space, using virtual memory man-
ager to do actual paging and caching of pages in the
standby and modified lists of pages

Page cache implements caching of pages and used as
lookaside cache for paging system

Threads can do direct I/O to bypass cache manager
views

Processes can do direct I/O to bypass page cache

Page Frame Number (PFN) database is central data
structure. Pages in PFN are either in a process page
table or linked into one of several lists: standby,
modified, free, bad

Pages removed from process address spaces kept in
page cache

Section Objects describe map-able memory objects,
like files, and include pageable, create-on-demand
prototype page table which can be used to uniquely
locate pages, including when faulted pages are
already in transition

Swap Cache used to manage multiple instances of
faulting the same page

Page replacement is based on working sets, for both
processes and the kernel-mode (the system process)

Page replacement uses a global clock algorithm

Security features for encrypting page files, and clear-
ing pages when freed

Allocate space in paging file as needed, so writes can
be localized for a group of freed pages; shared pages
use indirection through prototype page tables
associated with section object, so pagefile space can
be freed immediately

Allocate space in swap disk as needed, so writes can
be localized for a group of freed pages; shared pages
keep swap slot until all processes the slot have faulted
the page back in

WINDOWS/LINUX COMPARISON

M08_STAL6329_06_SE_C08.QXD 2/28/08 4:03 AM Page 392

Figure 8.26 Windows Default 32-Bit Virtual Address Space

8.5 / WINDOWS MEMORY MANAGEMENT 393

Figure 8.26 shows the default virtual address space seen by a normal 32-bit
user process. It consists of four regions:

• 0x00000000 to 0x0000FFFF: Set aside to help programmers catch NULL-
pointer assignments.

• 0x00010000 to 0x7FFEFFFF: Available user address space. This space is di-
vided into pages that may be loaded into main memory.

• 0x7FFF0000 to 0x7FFFFFFF: A guard page inaccessible to the user. This page
makes it easier for the operating system to check on out-of-bounds pointer
references.

• 0x80000000 to 0xFFFFFFFF: System address space. This 2-Gbyte process is
used for the Windows Executive, Kernel, and device drivers.

On 64-bit platforms, 8TB of user address space is available in Windows Vista.

Windows Paging

When a process is created, it can in principle make use of the entire user space of
almost 2 Gbytes. This space is divided into fixed-size pages, any of which can be

0
64-Kbyte region for
NULL-pointer assignments
(inaccessible)

64-Kbyte region for
bad-pointer assignments
(inaccessible)

2-Gbyte region for
the operating system
(inaccessible)

2-Gbyte user
address space
(unreserved, usable)

0xFFFFFFFF

M08_STAL6329_06_SE_C08.QXD 2/21/08 9:31 PM Page 393

394 CHAPTER 8 / VIRTUAL MEMORY

brought into main memory, but the operating system manages them in contiguous
regions allocated on 64-Kbyte boundaries. A region can be in one of three states:

• Available: Addresses not currently used by this process.

• Reserved: Addresses that the virtual memory manager has set aside for a
process so they cannot be allocated to another use (e.g., preserving space for a
stack to grow).

• Committed: Addresses for which the virtual memory manager has initialized
for use by the process to access virtual memory pages. These pages can reside
either on disk or in physical memory. When on disk they can be either kept in
files (mapped pages) or occupy space in the paging file (e.g., the disk file to
which it writes pages when removing them from main memory).

The distinction between reserved and committed memory is useful because it
(1) reduces the amount of total virtual memory space needed by the system, allow-
ing the page file to be smaller; and (2) allows programs to reserve addresses without
making them accessible to the program or having them charged against their
resource quotas.

The resident set management scheme used by Windows is variable allocation,
local scope (see Table 8.5).When a process is first activated, it is assigned data struc-
tures to manage its working set. As the pages needed by the process are brought
into physical memory the memory manager uses the data structures to keep track of
the pages assigned to the process. Working sets of active processes are adjusted
using the following general conventions:

• When main memory is plentiful, the virtual memory manager allows the resi-
dent sets of active processes to grow. To do this, when a page fault occurs, a
new physical page is added to the process but no older page is swapped out, re-
sulting in an increase of the resident set of that process by one page.

• When memory becomes scarce, the virtual memory manager recovers mem-
ory for the system by removing less recently used pages out of the working sets
of active processes, reducing the size of those resident sets.

8.6 SUMMARY

To use the processor and the I/O facilities efficiently, it is desirable to maintain as
many processes in main memory as possible. In addition, it is desirable to free pro-
grammers from size restrictions in program development.

The way to address both of these concerns is virtual memory. With virtual
memory, all address references are logical references that are translated at run time
to real addresses. This allows a process to be located anywhere in main memory and
for that location to change over time. Virtual memory also allows a process to be
broken up into pieces. These pieces need not be contiguously located in main mem-
ory during execution and, indeed, it is not even necessary for all of the pieces of the
process to be in main memory during execution.

M08_STAL6329_06_SE_C08.QXD 2/21/08 9:31 PM Page 394

Windows Linux

O(1) scheduling, using per-CPU priority lists Linux added O(1) scheduling, using
per-CPU priority lists in version 2.6

Lower priority numbers represent lower
priority

As with other flavors of UNIX, lower
priority numbers represent higher priority

16 non-real-time priorities (0-15) 40 non-real-time priorities (100-139)

Highest priority runnable threads (almost)
always scheduled on the available processors

Linux runs highest priority non-real-time
processes unless they hit their quantum (i.e. are
CPU bound), in which case lower-priority
processes are allowed to run to the end of their
quantum

Applications can specify CPU affinities, and
subject to that constraint, scheduler picks an
ideal processor which it always tries to use for
better cache performance. But threads are
moved to other idle CPUs, or CPUs running
lower-priority threads

Priority inversion is managed by a crude
mechanism that gives a huge priority boost to
threads that have been starved for seconds

Letting lower-priority processes runs ahead of
high-priority threads that hit their quantum
avoids starvation and thus fixes cases of
priority inversion

Priorities for non-real-time threads
dynamically adjusted to give better
performance for foreground applications and
I/O. Priorities boost from the base and then
decay at quantum end

Periodically the scheduler rebalances the
assignment of processes to CPUs by moving
processes from the ready queues for busy
CPUs to underutilized CPUs
Rebalancing is based on system defined sched-
uling domains rather than process affinities (i.e.
to correspond to NUMA nodes)

NUMA aware NUMA aware

16 real-time priority levels (16-31) with priority
over non-real-time threads

99 real-time priority levels (1-99) with priority
over non-real-time processes

Real-time threads are scheduled round-robin Real-time processes can be scheduled either
round or FIFO, meaning they will not preempted
except by a higher priority real-time process

WINDOWS/LINUX COMPARISON—SCHEDULING

10.5 WINDOWS SCHEDULING

Windows is designed to be as responsive as possible to the needs of a single user in
a highly interactive environment or in the role of a server. Windows implements a
preemptive scheduler with a flexible system of priority levels that includes round-
robin scheduling within each level and, for some levels, dynamic priority variation
on the basis of their current thread activity. Threads are the unit of scheduling in
Windows rather than processes.

10.5 / WINDOWS SCHEDULING 487

M10_STAL6329_06_SE_C10.QXD 2/28/08 4:06 AM Page 487

488 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

Process and Thread Priorities

Priorities in Windows are organized into two bands, or classes: real time and vari-
able. Each of these bands consists of 16 priority levels. Threads requiring immediate
attention are in the real-time class, which includes functions such as communica-
tions and real-time tasks.

Overall, because Windows makes use of a priority-driven preemptive sched-
uler, threads with real-time priorities have precedence over other threads. On a
uniprocessor, when a thread becomes ready whose priority is higher than the cur-
rently executing thread, the lower-priority thread is preempted and the processor
given to the higher-priority thread.

Priorities are handled somewhat differently in the two classes (Figure 10.15).
In the real-time priority class, all threads have a fixed priority that never changes.
All of the active threads at a given priority level are in a round-robin queue. In the

Highest (31)

Lowest (16)

Highest (15)

Lowest (0)

Real-time
priority
classes

Variable
priority
classes

Figure 10.15 Windows Thread Dispatching Priorities

M10_STAL6329_06_SE_C10.QXD 2/21/08 9:33 PM Page 488

variable priority class, a thread’s priority begins at some initial assigned value
and then may be temporarily boosted (raised) during the thread’s lifetime. There
is a FIFO queue at each priority level; a thread will change queues among the
variable priority classes as its own priority changes. However, a thread at priority
level 15 or below is never boosted to level 16 or any other level in the real-time
class.

The initial priority of a thread in the variable priority class is determined by two
quantities: process base priority and thread base priority. The process base priority is
an attribute of the process object, and can take on any value from 0 through 15. Each
thread object associated with a process object has a thread base priority attribute that
indicates the thread’s base priority relative to that of the process. The thread’s base
priority can be equal to that of its process or within two levels above or below that of
the process. So, for example, if a process has a base priority of 4 and one of its threads
has a base priority of -1, then the initial priority of that thread is 3.

Once a thread in the variable priority class has been activated, its actual prior-
ity, referred to as the thread’s current priority, may fluctuate within given bound-
aries. The current priority may never fall below the thread’s base priority and it may
never exceed 15. Figure 10.16 gives an example. The process object has a base prior-
ity attribute of 4. Each thread object associated with this process object must have
an initial priority of between 2 and 6. Suppose the base priority for thread is 4. Then
the current priority for that thread may fluctuate in the range from 4 through 15 de-
pending on what boosts it has been given. If a thread is interrupted to wait on an I/O
event, the Windows Kernel boosts its priority. If a boosted thread is interrupted be-
cause it has used up its current time quantum, the Kernel lowers its priority. Thus,
processor-bound threads tend toward lower priorities and I/O-bound threads tend
toward higher priorities. In the case of I/O-bound threads, the Kernel boosts the pri-
ority more for interactive waits (e.g., wait on keyboard or display) than for other

Base priority Normal

Below normal

Lowest

Above normal

Highest

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Process
priority

Thread's base
priority

Thread's dynamic
priority

Figure 10.16 Example of Windows Priority Relationship

10.5 / WINDOWS SCHEDULING 489

M10_STAL6329_06_SE_C10.QXD 2/21/08 9:33 PM Page 489

490 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

types of I/O (e.g., disk I/O). Thus, interactive threads tend to have the highest prior-
ities within the variable priority class.

Multiprocessor Scheduling

When Windows is run on a single processor, the highest-priority thread is always active
unless it is waiting on an event. If there is more than one thread that has the same high-
est priority, then the processor is shared, round robin, among all the threads at that pri-
ority level. In a multiprocessor system with N processors, the Kernel tries to give the N
processors to the N highest priority threads that are ready to run.The remaining, lower-
priority, threads must wait until the other threads block or have their priority decay.
Lower-priority threads may also have their priority boosted to 15 for a very short time
if they are being starved, solely to correct instances of priority inversion.

The foregoing scheduling discipline is affected by the processor affinity attribute
of a thread. If a thread is ready to execute but the only available processors are not in
its processor affinity set, then that thread is forced to wait, and the Kernel schedules
the next available thread.

10.6 SUMMARY

With a tightly coupled multiprocessor, multiple processors have access to the
same main memory. In this configuration, the scheduling structure is somewhat
more complex. For example, a given process may be assigned to the same processor
for its entire life or dispatched to any processor each time it enters the Running
state. Performance studies suggest that the differences among various scheduling
algorithms are less significant in a multiprocessor system.

A real-time process or task is one that is executed in connection with some
process or function or set of events external to the computer system and that must
meet one or more deadlines to interact effectively and correctly with the external en-
vironment.A real-time operating system is one that is capable of managing real-time
processes. In this context, the traditional criteria for a scheduling algorithm do not
apply. Rather, the key factor is the meeting of deadlines.Algorithms that rely heavily
on preemption and on reacting to relative deadlines are appropriate in this context.

10.7 RECOMMENDED READING

[WEND89] is an interesting discussion of approaches to multiprocessor scheduling.
A good treatment of real-time scheduling is contained in [LIU00]. The following
collections of papers all contain important articles on real-time operating systems
and scheduling: [KRIS94], [STAN93], [LEE93], and [TILB91]. [SHA90] provides a
good explanation of priority inversion, priority inheritance, and priority ceiling.
[ZEAD97] analyzes the performance of the SVR4 real-time scheduler. [LIND04]
provides an overview of the Linux 2.6 scheduler; [LOVE05] contains a more de-
tailed discussion.

M10_STAL6329_06_SE_C10.QXD 2/21/08 9:33 PM Page 490

11.10 / WINDOWS I/O 533

As can be seen, the performance improvement depends on the nature of
the workload. But in both cases, the anticipatory scheduler provides a dramatic
improvement.

Linux Page Cache

In Linux 2.2 and earlier releases, the kernel maintained a page cache for reads and
writes from regular file system files and for virtual memory pages, and a separate
buffer cache for block I/O. For Linux 2.4 and later, there is a single unified page
cache that is involved in all traffic between disk and main memory.

The page cache confers two benefits. First, when it is time to write back dirty
pages to disk, a collection of them can be ordered properly and written out effi-
ciently. Second, because of the principle of temporal locality, pages in the page cache
are likely to be referenced again before they are flushed from the cache, thus saving
a disk I/O operation.

Dirty pages are written back to disk in two situations:

• When free memory falls below a specified threshold, the kernel reduces the
size of the page cache to release memory to be added to the free memory pool.

• When dirty pages grow older than a specified threshold, a number of dirty
pages are written back to disk.

11.10 WINDOWS I/O

Figure 11.15 shows the key kernel mode components related to the Windows I/O
manager. The I/O manager is responsible for all I/O for the operating system and
provides a uniform interface that all types of drivers can call.

Basic I/O Facilities

The I/O manager works closely with four types of kernel components:

• Cache manager: The cache manager handles file caching for all file systems. It
can dynamically increase and decrease the size of the cache devoted to a par-
ticular file as the amount of available physical memory varies. The system

I/O manager

Cache
manager

File system
drivers

Network
drivers

Hardware
device drivers

Figure 11.15 Windows I/O Manager

M11_STAL6329_06_SE_C11.QXD 2/21/08 9:33 PM Page 533

534 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

records updates in the cache only and not on disk. A kernel thread, the lazy
writer, periodically batches the updates together to write to disk. Writing the
updates in batches allows the I/O to be more efficient. The cache manager
works by mapping regions of files into kernel virtual memory and then relying
on the virtual memory manager to do most of the work to copy pages to and
from the files on disk.

• File system drivers: The I/O manager treats a file system driver as just another
device driver and routes I/O requests for file system volumes to the appropri-
ate software driver for that volume.The file system, in turn, sends I/O requests
to the software drivers that manage the hardware device adapter.

• Network drivers: Windows includes integrated networking capabilities and
support for remote file systems.The facilities are implemented as software dri-
vers rather than part of the Windows Executive.

• Hardware device drivers: These software drivers access the hardware regis-
ters of the peripheral devices using entry points in the kernel’s Hardware Ab-
straction Layer. A set of these routines exists for every platform that
Windows supports; because the routine names are the same for all platforms,
the source code of Windows device drivers is portable across different proces-
sor types.

Asynchronous and Synchronous I/O

Windows offers two modes of I/O operation: asynchronous and synchronous. The
asynchronous mode is used whenever possible to optimize application performance.
With asynchronous I/O, an application initiates an I/O operation and then can con-
tinue processing while the I/O request is fulfilled. With synchronous I/O, the appli-
cation is blocked until the I/O operation completes.

Asynchronous I/O is more efficient, from the point of view of the calling
thread, because it allows the thread to continue execution while the I/O operation is
queued by the I/O manager and subsequently performed. However, the application
that invoked the asynchronous I/O operation needs some way to determine when
the operation is complete. Windows provides five different techniques for signaling
I/O completion:

• Signaling the file object: With this approach, the event associated with a file
object is set when an operation on that object is complete. The thread that in-
voked the I/O operation can continue to execute until it reaches a point where
it must stop until the I/O operation is complete. At that point, the thread can
wait until the operation is complete and then continue. This technique is sim-
ple and easy to use but is not appropriate for handling multiple I/O requests.
For example, if a thread needs to perform multiple simultaneous actions on a
single file, such as reading from one portion and writing to another portion of
the file, with this technique, the thread could not distinguish between the com-
pletion of the read and the completion of the write. It would simply know that
some requested I/O operation on this file was complete.

• Signaling an event object: This technique allows multiple simultaneous I/O
requests against a single device or file. The thread creates an event for each

M11_STAL6329_06_SE_C11.QXD 2/21/08 9:33 PM Page 534

11.10 / WINDOWS I/O 535

request. Later, the thread can wait on a single one of these requests or on an
entire collection of requests.

• Asynchronous procedure call: This technique makes use of a queue associated
with a thread, known as the asynchronous procedure call (APC) queue. In this
case, the thread makes I/O requests, specifying a user mode routine to call
when the I/O completes. The I/O manager places the results of each request in
the calling thread’s APC queue. The next time the thread blocks in the kernel,
the APCs will be delivered; each causing the thread to return to user mode and
execute the specified routine.

• I/O completion ports: This technique is used on a Windows server to optimize
the use of threads. The application creates a pool of threads for handling the
completion of I/O requests. Each thread waits on the completion port, and the
Kernel wakes threads to handle each I/O completion. One of the advantages
of this approach is that the application can specify a limit for how many of
these threads will run at a time.

• Polling: Asynchronous I/O requests write a status and transfer count into the
process’ user virtual memory when the operation completes. A thread can just
check these values to see if the operation has completed.

Software RAID

Windows supports two sorts of RAID configurations, defined in [MS96] as follows:

• Hardware RAID: Separate physical disks combined into one or more logical
disks by the disk controller or disk storage cabinet hardware.

• Software RAID: Noncontiguous disk space combined into one or more logical
partitions by the fault-tolerant software disk driver, FTDISK.

In hardware RAID, the controller interface handles the creation and regener-
ation of redundant information. The software RAID, available on Windows Server,
implements the RAID functionality as part of the operating system and can be used
with any set of multiple disks. The software RAID facility implements RAID 1 and
RAID 5. In the case of RAID 1 (disk mirroring), the two disks containing the pri-
mary and mirrored partitions may be on the same disk controller or different disk
controllers. The latter configuration is referred to as disk duplexing.

Volume Shadow Copies

Shadow copies are an efficient way of making consistent snapshots of volumes to
that they can be backed up. They are also useful for archiving files on a per-volume
basis. If a user deletes a file, he or she can retrieve an earlier copy from any avail-
able shadow copy made by the system administrator. Shadow copies are imple-
mented by a software driver that makes copies of data on the volume before it is
overwritten.

Volume Encryption

Starting with Windows Vista, the operating system supports the encryption of entire
volumes. This is more secure than encrypting individual files, as the entire system

M11_STAL6329_06_SE_C11.QXD 2/21/08 9:33 PM Page 535

536 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

works to be sure that the data is safe. Up to three different methods of supplying the
cryptographic key can be provided; allowing multiple interlocking layers of security.

11.11 SUMMARY

The computer system’s interface to the outside world is its I/O architecture. This
architecture is designed to provide a systematic means of controlling interaction
with the outside world and to provide the operating system with the information it
needs to manage I/O activity effectively.

The I/O function is generally broken up into a number of layers, with lower
layers dealing with details that are closer to the physical functions to be per-
formed and higher layers dealing with I/O in a logical and generic fashion. The
result is that changes in hardware parameters need not affect most of the I/O soft-
ware.

A key aspect of I/O is the use of buffers that are controlled by I/O utilities
rather than by application processes. Buffering smoothes out the differences be-
tween the internal speeds of the computer system and the speeds of I/O devices.The
use of buffers also decouples the actual I/O transfer from the address space of the
application process. This allows the operating system more flexibility in performing
its memory-management function.

The aspect of I/O that has the greatest impact on overall system performance
is disk I/O. Accordingly, there has been greater research and design effort in this
area than in any other kind of I/O. Two of the most widely used approaches to im-
prove disk I/O performance are disk scheduling and the disk cache.

At any time, there may be a queue of requests for I/O on the same disk. It is
the object of disk scheduling to satisfy these requests in a way that minimizes the
mechanical seek time of the disk and hence improves performance. The physical
layout of pending requests plus considerations of locality come into play.

A disk cache is a buffer, usually kept in main memory, that functions as a cache
of disk blocks between disk memory and the rest of main memory. Because of the
principle of locality, the use of a disk cache should substantially reduce the number
of block I/O transfers between main memory and disk.

11.12 RECOMMENDED READING

General discussions of computer I/O can be found in most books on computer ar-
chitecture, such as [STAL06]. [MEE96a] provides a good survey of the underlying
recording technology of disk and tape systems. [MEE96b] focuses on the data stor-
age techniques for disk and tape systems. [WIED87] contains an excellent discus-
sion of disk performance issues, including those relating to disk scheduling. [NG98]
looks at disk hardware performance issues. [CAO96] analyzes disk caching and disk
scheduling. Good surveys of disk scheduling algorithms, with a performance analy-
sis, are [WORT94] and [SELT90].

M11_STAL6329_06_SE_C11.QXD 2/21/08 9:33 PM Page 536

12.10 / WINDOWS FILE SYSTEM 591

• mkdir: Creates a new inode for a directory associated with a dentry object in
some directory

The Dentry Object

A dentry (directory entry) is a specific component in a path.The component may be
either a directory name or a file name. Dentry objects facilitate access to files and
directories and are used in a dentry cache for that purpose. The dentry object in-
cludes a pointer to the inode and superblock. It also includes a pointer to the parent
dentry and pointers to any subordinate dentrys.

The File Object

The file object is used to represent a file opened by a process. The object is created
in response to the open() system call and destroyed in response to the close() sys-
tem call. The file object consists of a number of items, including the following:

• Dentry object associated with the file
• File system containing the file
• File objects usage counter
• User’s user ID
• User’s group ID
• File pointer, which is the current position in the file from which the next oper-

ation will take place

The file object also includes an inode operations object that describes the file
system’s implemented functions that the VFS can invoke on a file object. The meth-
ods defined for the file object include read, write, open, release, and lock.

12.10 WINDOWS FILE SYSTEM

The developers of Windows designed a new file system, the New Technology File
System (NTFS), that is intended to meet high-end requirements for workstations
and servers. Examples of high-end applications include the following:

• Client/server applications such as file servers, compute servers, and database
servers

• Resource-intensive engineering and scientific applications
• Network applications for large corporate systems

This section provides an overview of NTFS.

Key Features of NTFS

NTFS is a flexible and powerful file system built, as we shall see, on an elegantly sim-
ple file system model. The most noteworthy features of NTFS include the following:

• Recoverability: High on the list of requirements for the new Windows file
system was the ability to recover from system crashes and disk failures. In the

M12_STAL6329_06_SE_C12.QXD 2/21/08 9:40 PM Page 591

592 CHAPTER 12 / FILE MANAGEMENT

WINDOWS/LINUX COMPARISON
Windows Linux

Windows supports a variety of file systems, in-
cluding the legacy FAT/FAT32 file systems from
DOS/Windows and formats common to CDs and
DVDs

The most common file system used in Windows is
NTFS, which has many advanced features related
to security, encryption, compression, journaling,
change notifications, and indexing built in

NTFS uses logging of metadata to avoid having
to perform file system checks after crashes

Windows file systems are implemented as device
drivers, and can be stacked in layers, as with other
device drivers, due to the object-oriented imple-
mentation of Windows I/O. Typically NTFS is
sandwiched between 3rd party filter drivers, which
implement functions like anti-virus, and the vol-
ume management drivers, which implement
RAID

The file systems depend heavily on the I/O sys-
tem and the CACHE manager. The cache man-
ager is a virtual file cache that maps regions of
files into kernel virtual-address space

The CACHE manager is implemented on top of
the virtual memory system, providing a unified
caching mechanism for both pages and file
blocks

Directories, bitmaps, file and file system meta-
data, are all represented as files by NTFS, and
thus all rely on unified caching by the CACHE
manager

Pre-fetching of disk data uses sophisticated algo-
rithms which remember past access patterns of
code and data for applications, and initiate asyn-
chronous pagefault operations when applications
launch, move to the foreground, or resume from
the system hibernate power-off state

Linux supports a variety of file systems, including
Microsoft file systems, for compatibility and inter-
operation

The most common file systems are Ext2, Ext3, and
IBM’s JFS journaling file system

With Ext3, journaling of changes allows file system
checks to be avoided after crashes

Linux file systems are implemented using the Vir-
tual File System (VFS) technique developed by Sun
Microsystems. File systems are plug-ins in the VFS
model, which is similar to the general object-oriented
model used for block and character devices

Linux uses a page cache which keeps copies of re-
cently used pages in memory. Pages are organized
per ‘owner’: most commonly an inode for files and
directories, or the inode of the block device for file
system metadata

The Linux virtual memory system builds memory-
mapping of files on top of the page cache facility

The Common File System model of VFS treats di-
rectory entries and file inodes and other file system
metadata, such as the superblock, separately from
file data with special caching for each category. File
data can be stored in the cache twice, once for the
‘file’ owner and once for the ‘block device’ owner

Pre-fetching of disk data uses read-ahead of files
that are being accessed sequentially

event of such failures, NTFS is able to reconstruct disk volumes and return
them to a consistent state. It does this by using a transaction processing model
for changes to the file system; each significant change is treated as an atomic
action that is either entirely performed or not performed at all. Each transac-
tion that was in process at the time of a failure is subsequently backed out or

M12_STAL6329_06_SE_C12.QXD 2/28/08 4:13 AM Page 592

12.10 / WINDOWS FILE SYSTEM 593

brought to completion. In addition, NTFS uses redundant storage for critical
file system data, so that failure of a disk sector does not cause the loss of data
describing the structure and status of the file system.

• Security: NTFS uses the Windows object model to enforce security. An open
file is implemented as a file object with a security descriptor that defines its se-
curity attributes. The security descriptor is persisted as an attribute of each file
on disk.

• Large disks and large files: NTFS supports very large disks and very large
files more efficiently than most other file systems, including FAT.

• Multiple data streams: The actual contents of a file are treated as a stream
of bytes. In NTFS it is possible to define multiple data streams for a single
file. An example of the utility of this feature is that it allows Windows to be
used by remote Macintosh systems to store and retrieve files. On Macintosh,
each file has two components: the file data and a resource fork that contains
information about the file. NTFS treats these two components as two data
streams.

• Journaling: NTFS keeps a log of all changes made to files on the volumes.
Programs, such as desktop search, can read the journal to identify what files
have changed.

• Compression and Encryption: Entire directories and individual files can be
transparently compressed and/or encrypted.

NTFS Volume and File Structure

NTFS makes use of the following disk storage concepts:

• Sector: The smallest physical storage unit on the disk. The data size in bytes
is a power of 2 and is almost always 512 bytes.

• Cluster: One or more contiguous (next to each other on the same track) sec-
tors. The cluster size in sectors is a power of 2.

• Volume: A logical partition on a disk, consisting of one or more clusters and
used by a file system to allocate space. At any time, a volume consists of a file
system information, a collection of files, and any additional unallocated space
remaining on the volume that can be allocated to files. A volume can be all or
a portion of a single disk or it can extend across multiple disks. If hardware or
software RAID 5 is employed, a volume consists of stripes spanning multiple
disks. The maximum volume size for NTFS is 264 bytes.

The cluster is the fundamental unit of allocation in NTFS, which does not rec-
ognize sectors. For example, suppose each sector is 512 bytes and the system is con-
figured with two sectors per cluster (one cluster ! 1K bytes). If a user creates a file
of 1600 bytes, two clusters are allocated to the file. Later, if the user updates the file
to 3200 bytes, another two clusters are allocated.The clusters allocated to a file need
not be contiguous; it is permissible to fragment a file on the disk. Currently, the max-
imum file size supported by NTFS is 232 clusters, which is equivalent to a maximum
of 248 bytes. A cluster can have at most 216 bytes.

M12_STAL6329_06_SE_C12.QXD 2/21/08 9:40 PM Page 593

594 CHAPTER 12 / FILE MANAGEMENT

The use of clusters for allocation makes NTFS independent of physical sector size.
This enables NTFS to support easily nonstandard disks that do not have a 512-byte sec-
tor size and to support efficiently very large disks and very large files by using a larger
cluster size. The efficiency comes from the fact that the file system must keep track of
each cluster allocated to each file; with larger clusters, there are fewer items to manage.

Table 12.5 shows the default cluster sizes for NTFS. The defaults depend on
the size of the volume. The cluster size that is used for a particular volume is estab-
lished by NTFS when the user requests that a volume be formatted.

NTFS Volume Layout NTFS uses a remarkably simple but powerful ap-
proach to organizing information on a disk volume. Every element on a volume is a
file, and every file consists of a collection of attributes. Even the data contents of a
file is treated as an attribute. With this simple structure, a few general-purpose func-
tions suffice to organize and manage a file system.

Figure 12.19 shows the layout of an NTFS volume, which consists of four re-
gions. The first few sectors on any volume are occupied by the partition boot sector
(although it is called a sector, it can be up to 16 sectors long), which contains infor-
mation about the volume layout and the file system structures as well as boot
startup information and code.This is followed by the master file table (MFT), which
contains information about all of the files and folders (directories) on this NTFS
volume. In essence, the MFT is a list of all files and their attributes on this NTFS vol-
ume, organized as a set of rows in a relational database structure.

Following the MFT is a region, typically about 1 Mbyte in length, containing
system files. Among the files in this region are the following:

• MFT2: A mirror of the first three rows of the MFT, used to guarantee access
to the MFT in the case of a single-sector failure

Table 12.5 Windows NTFS Partition and Cluster Sizes

Volume Size Sectors per Cluster Cluster Size

512 Mbyte 1 512 bytes

512 Mbyte–1 Gbyte 2 1K

1 Gbyte–2 Gbyte 4 2K

2 Gbyte–4 Gbyte 8 4K

4 Gbyte–8 Gbyte 16 8K

8 Gbyte–16 Gbyte 32 16K

16 Gbyte–32 Gbyte 64 32K

> 32 Gbyte 128 64K

Figure 12.19 NTFS Volume Layout

Partition
boot

sector
Master file table File areaSystem

files

M12_STAL6329_06_SE_C12.QXD 2/21/08 9:40 PM Page 594

12.10 / WINDOWS FILE SYSTEM 595

• Log file: A list of transaction steps used for NTFS recoverability
• Cluster bit map: A representation of the volume, showing which clusters are

in use
• Attribute definition table: Defines the attribute types supported on this vol-

ume and indicates whether they can be indexed and whether they can be re-
covered during a system recovery operation

Master File Table The heart of the Windows file system is the MFT. The MFT
is organized as a table of 1024-byte rows, called records. Each row describes a file on
this volume, including the MFT itself, which is treated as a file. If the contents of a
file are small enough, then the entire file is located in a row of the MFT. Otherwise,
the row for that file contains partial information and the remainder of the file spills
over into other available clusters on the volume, with pointers to those clusters in
the MFT row of that file.

Each record in the MFT consists of a set of attributes that serve to define the
file (or folder) characteristics and the file contents.Table 12.6 lists the attributes that
may be found in a row, with the required attributes indicated by shading.

Recoverability

NTFS makes it possible to recover the file system to a consistent state following a
system crash or disk failure. The key elements that support recoverability are as fol-
lows (Figure 12.20):

• I/O manager: Includes the NTFS driver, which handles the basic open, close,
read, write functions of NTFS. In addition, the software RAID module FT-
DISK can be configured for use.

Table 12.6 Windows NTFS File and Directory Attribute Types

Attribute Type Description

Standard information Includes access attributes (read-only, read/write, etc.); time stamps, including
when the file was created or last modified; and how many directories point to the
file (link count).

Attribute list A list of attributes that make up the file and the file reference of the MFT file
record in which each attribute is located. Used when all attributes do not fit into a
single MFT file record.

File name A file or directory must have one or more names.

Security descriptor Specifies who owns the file and who can access it.

Data The contents of the file. A file has one default unnamed data attribute and may
have one or more named data attributes.

Index root Used to implement folders.

Index allocation Used to implement folders.

Volume information Includes volume-related information, such as the version and name of the vol-
ume.

Bitmap Provides a map representing records in use on the MFT or folder.

Note: Colored rows refer to required file attributes; the other attributes are optional.

M12_STAL6329_06_SE_C12.QXD 2/29/08 11:48 PM Page 595

596 CHAPTER 12 / FILE MANAGEMENT

• Log file service: Maintains a log of file system metadata changes on disk. The
log file is used to recover an NTFS-formatted volume in the case of a system
failure (i.e., without having to run the file system check utility).

• Cache manager: Responsible for caching file reads and writes to enhance per-
formance. The cache manager optimizes disk I/O.

• Virtual memory manager: The NTFS accesses cached files by mapping file
references to virtual memory references and reading and writing virtual
memory.

It is important to note that the recovery procedures used by NTFS are de-
signed to recover file system metadata, not file contents. Thus, the user should never
lose a volume or the directory/file structure of an application because of a crash.
However, user data are not guaranteed by the file system. Providing full recover-
ability, including user data, would make for a much more elaborate and resource-
consuming recovery facility.

The essence of the NTFS recovery capability is logging. Each operation that
alters a file system is treated as a transaction. Each suboperation of a transaction
that alters important file system data structures is recorded in a log file before being
recorded on the disk volume. Using the log, a partially completed transaction at the
time of a crash can later be redone or undone when the system recovers.

In general terms, these are the steps taken to ensure recoverability, as de-
scribed in [RUSS05]:

1. NTFS first calls the log file system to record in the log file in the cache any
transactions that will modify the volume structure.

2. NTFS modifies the volume (in the cache).

Figure 12.20 Windows NTFS Components

Log file
service

NTFS driver

I/O manager

Fault-tolerant
driver

Disk driver

Cache
manager

Virtual memory
manager

Flush the
log file

Write the
cache

Log the transaction

Read/write a
mirrored or

striped volume

Read/write
the disk

Read/write
the file

Load data from
disk into
memory

Access the mapped
file or flush the cache

M12_STAL6329_06_SE_C12.QXD 2/21/08 9:40 PM Page 596

12.12 / SUMMARY 597

3. The cache manager calls the log file system to prompt it to flush the log file to
disk.

4. Once the log file updates are safely on disk, the cache manager flushes the vol-
ume changes to disk.

12.11 SUMMARY

A file management system is a set of system software that provides services to users and
applications in the use of files, including file access, directory maintenance, and access con-
trol. The file management system is typically viewed as a system service that itself is served
by the operating system, rather than being part of the operating system itself. However, in
any system, at least part of the file management function is performed by the operating
system.

A file consists of a collection of records. The way in which these records may be ac-
cessed determines its logical organization, and to some extent its physical organization on
disk. If a file is primarily to be processed as a whole, then a sequential file organization is the
simplest and most appropriate. If sequential access is needed but random access to individ-
ual file is also desired, then an indexed sequential file may give the best performance. If ac-
cess to the file is principally at random, then an indexed file or hashed file may be the most
appropriate.

Whatever file structure is chosen, a directory service is also needed. This allows files to
be organized in a hierarchical fashion. This organization is useful to the user in keeping track
of files and is useful to the file management system in providing access control and other ser-
vices to users.

File records, even when of fixed size, generally do not conform to the size of a physical
disk block.Accordingly, some sort of blocking strategy is needed.A tradeoff among complex-
ity, performance, and space utilization determines the blocking strategy to be used.

A key function of any file management scheme is the management of disk space. Part
of this function is the strategy for allocating disk blocks to a file. A variety of methods have
been employed, and a variety of data structures have been used to keep track of the alloca-
tion for each file. In addition, the space on disk that has not been allocated must be managed.
This latter function primarily consists of maintaining a disk allocation table indicating which
blocks are free.

12.12 RECOMMENDED READING

There are a number of good books on file management. The following all focus on
file management systems but also address related operating system issues. Perhaps
the most useful is [WIED87], which takes a quantitative approach to file manage-
ment and deals with all of the issues raised in Figure 12.2, from disk scheduling to
file structure. [LIVA90] emphasizes file structures, providing a good and lengthy
survey with comparative performance analyses. [GROS86] provides a balanced
look at issues relating to both file I/O and file access methods. It also contains gen-
eral descriptions of all of the control structures needed by a file system. These pro-
vide a useful checklist in assessing a file system design. [FOLK98] emphasizes the

M12_STAL6329_06_SE_C12.QXD 2/21/08 9:40 PM Page 597

15.6 / WINDOWS VISTA SECURITY 697

15.6 WINDOWS VISTA SECURITY

A good example of the access control concepts we have been discussing is the Win-
dows access control facility, which exploits object-oriented concepts to provide a
powerful and flexible access control capability.

Windows provides a uniform access control facility that applies to processes,
threads, files, semaphores, windows, and other objects.Access control is governed by
two entities: an access token associated with each process and a security descriptor
associated with each object for which interprocess access is possible.

Access Control Scheme

When a user logs on to an Windows system,Windows uses a name/password scheme
to authenticate the user. If the logon is accepted, a process is created for the user
and an access token is associated with that process object. The access token, whose
details are described later, include a security ID (SID), which is the identifier by
which this user is known to the system for purposes of security. If the initial user
process spawns a new process, the new process object inherits the same access
token.

The access token serves two purposes:

1. It keeps all necessary security information together to speed access validation.
When any process associated with a user attempts access, the security subsys-
tem can make use of the token associated with that process to determine the
user’s access privileges.

2. It allows each process to modify its security characteristics in limited ways
without affecting other processes running on behalf of the user.

The chief significance of the second point has to do with privileges that may be
associated with a user. The access token indicates which privileges a user may have.
Generally, the token is initialized with each of these privileges in a disabled state.
Subsequently, if one of the user’s processes needs to perform a privileged operation,
the process may enable the appropriate privilege and attempt access. It would be
undesirable to share the same token among all a user’s processes, because in that
case enabling a privilege for one process enables it for all of them.

Associated with each object for which interprocess access is possible is a secu-
rity descriptor. The chief component of the security descriptor is an access control
list that specifies access rights for various users and user groups for this object.
When a process attempts to access this object , the SID of the process is matched
against the access control list of the object to determine if access will be allowed or
denied.

When an application opens a reference to a securable object,Windows verifies
that the object’s security descriptor grants the application’s user access. If the check
succeeds, Windows caches the resulting granted access rights.

An important aspect of Windows security is the concept of impersonation,
which simplifies the use of security in a client/server environment. If client and
server talk through a RPC connection, the server can temporarily assume the

M15_STAL6329_06_SE_C15.QXD 2/22/08 8:43 PM Page 697

698 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

identity of the client so that it can evaluate a request for access relative to that
client’s rights. After the access, the server reverts to its own identity.

Access Token

Figure 15.11a shows the general structure of an access token, which includes the fol-
lowing parameters:

• Security ID: Identifies a user uniquely across all of the machines on the net-
work. This generally corresponds to a user’s logon name.

• Group SIDs: A list of the groups to which this user belongs. A group is simply
a set of user IDs that are identified as a group for purposes of access control.
Each group has a unique group SID.Access to an object can be defined on the
basis of group SIDs, individual SIDs, or a combination. There is also a SID
which reflects the process integrity level (low, medium, high, or system).

• Privileges: A list of security-sensitive system services that this user may call.
An example is create token. Another example is the set backup privilege;
users with this privilege are allowed to use a backup tool to back up files that
they normally would not be able to read.

• Default Owner: If this process creates another object, this field specifies who
is the owner of the new object. Generally, the owner of the new process is the
same as the owner of the spawning process. However, a user may specify that
the default owner of any processes spawned by this process is a group SID to
which this user belongs.

• Default ACL: This is an initial list of protections applied to the objects that the
user creates. The user may subsequently alter the ACL for any object that it
owns or that one of its groups owns.

ACL HeaderSecurity ID (SID)

Group SIDS

Privileges

Default Owner

Default ACL

ACE Header

Flags

Owner

System Access
Control List

Discretionary
Access

Control List

Access Mask

SID

ACE Header

Access Mask

SID

(c) Access control list(b) Security descriptor(a) Access token

Figure 15.11 Windows Security Structures

M15_STAL6329_06_SE_C15.QXD 2/22/08 8:43 PM Page 698

15.6 / WINDOWS VISTA SECURITY 699

Security Descriptors

Figure 15.11b shows the general structure of a security descriptor, which includes
the following parameters:

• Flags: Defines the type and contents of a security descriptor.The flags indicate
whether or not the SACL and DACL are present, whether or not they were
placed on the object by a defaulting mechanism, and whether the pointers in
the descriptor use absolute or relative addressing. Relative descriptors are re-
quired for objects that are transmitted over a network, such as information
transmitted in a RPC.

• Owner: The owner of the object can generally perform any action on the secu-
rity descriptor. The owner can be an individual or a group SID. The owner has
the authority to change the contents of the DACL.

• System Access Control List (SACL): Specifies what kinds of operations on the
object should generate audit messages. An application must have the corre-
sponding privilege in its access token to read or write the SACL of any object.
This is to prevent unauthorized applications from reading SACLs (thereby
learning what not to do to avoid generating audits) or writing them (to gener-
ate many audits to cause an illicit operation to go unnoticed). The SACL also
specifies the object integrity level. Processes cannot modify an object unless
the process integrity level meets or exceeds the level on the object.

• Discretionary Access Control List (DACL): Determines which users and
groups can access this object for which operations. It consists of a list of access
control entries (ACEs).

When an object is created, the creating process can assign as owner its own
SID or any group SID in its access token. The creating process cannot assign an
owner that is not in the current access token. Subsequently, any process that has
been granted the right to change the owner of an object may do so, but again with
the same restriction.The reason for the restriction is to prevent a user from covering
his tracks after attempting some unauthorized action.

Let us look in more detail at the structure of access control lists, because these
are at the heart of the Windows access control facility (Figure 15.11c). Each list consists
of an overall header and a variable number of access control entries. Each entry speci-
fies an individual or group SID and an access mask that defines the rights to be granted
to this SID. When a process attempts to access an object, the object manager in the
Windows Executive reads the SID and group SIDs from the access token and includ-
ing the integrity level SID. If the access requested includes modifying the object, the
integrity level is checked against the object integrity level in the SACL. If that test
passes, the object manager then scans down the object’s DACL. If a match is found
(that is, if an ACE is found with a SID that matches one of the SIDs from the access
token), then the process can have the access rights specified by the access mask in that
ACE.This also may including denying access, in which case the access request fails.

Figure 15.12 shows the contents of the access mask.The least significant 16 bits
specify access rights that apply to a particular type of object. For example, bit 0 for a
file object is File_Read_Data access and bit 0 for an event object is Event_
Query_Status access.

M15_STAL6329_06_SE_C15.QXD 2/22/08 8:43 PM Page 699

700 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

The most significant 16 bits of the mask contains bits that apply to all types of
objects. Five of these are referred to as standard access types:

• Synchronize: Gives permission to synchronize execution with some event asso-
ciated with this object. In particular, this object can be used in a wait function.

• Write_owner: Allows a program to modify the owner of the object. This is
useful because the owner of an object can always change the protection on the
object (the owner may not be denied Write DAC access).

• Write_DAC: Allows the application to modify the DACL and hence the pro-
tection on this object.

• Read_control: Allows the application to query the owner and DACL fields of
the security descriptor of this object.

• Delete: Allows the application to delete this object.

The high-order half of the access mask also contains the four generic access
types.These bits provide a convenient way to set specific access types in a number of
different object types. For example, suppose an application wishes to create several
types of objects and ensure that users have read access to the objects, even though
read has a somewhat different meaning for each object type. To protect each object
of each type without the generic access bits, the application would have to construct
a different ACE for each type of object and be careful to pass the correct ACE when
creating each object. It is more convenient to create a single ACE that expresses the
generic concept allow read, simply apply this ACE to each object that is created, and
have the right thing happen. That is the purpose of the generic access bits, which are

• Generic_all: Allow all access
• Generic_execute: Allow execution if executable
• Generic_write: Allow write access
• Generic_read: Allow read only access

Delete
Read Control

Write DAC
Write Owner
SynchronizeGeneric

access types

Standard
access types

Access system security
Maximum allowed

Generic All
Generic Execute
Generic Write
Generic Read

Specific access types

Figure 15.12 Access Mask

M15_STAL6329_06_SE_C15.QXD 2/22/08 8:43 PM Page 700

15.7 / RECOMMENDED READING AND WEB SITES 701

The generic bits also affect the standard access types. For example, for a file
object, the Generic_Read bit maps to the standard bits Read_Control and Syn-
chronize and to the object-specific bits File_Read_Data, File_Read_Attributes,
and File_Read_EA. Placing an ACE on a file object that grants some SID Generic_
Read grants those five access rights as if they had been specified individually in the
access mask.

The remaining two bits in the access mask have special meanings. The Ac-
cess_System_Security bit allows modifying audit and alarm control for this object.
However, not only must this bit be set in the ACE for a SID, but the access token for
the process with that SID must have the corresponding privilege enabled.

Finally, the Maximum_Allowed bit is not really an access bit, but a bit that
modifies Windows ‘s algorithm for scanning the DACL for this SID. Normally, Win-
dows will scan through the DACL until it reaches an ACE that specifically grants
(bit set) or denies (bit not set) the access requested by the requesting process or
until it reaches the end of the DACL, in which latter case access is denied. The
Maximum_Allowed bit allows the object’s owner to define a set of access rights that
is the maximum that will be allowed to a given user. With this in mind, suppose that
an application does not know all of the operations that it is going to be asked to per-
form on an object during a session. There are three options for requesting access:

1. Attempt to open the object for all possible accesses. The disadvantage of this
approach is that the access may be denied even though the application may
have all of the access rights actually required for this session.

2. Only open the object when a specific access is requested, and open a new handle
to the object for each different type of request. This is generally the preferred
method because it will not unnecessarily deny access, nor will it allow more ac-
cess than necessary. However, it imposes additional overhead.

3. Attempt to open the object for as much access as the object will allow this SID.
The advantage is that the user will not be artificially denied access, but the
application may have more access than it needs.This latter situation may mask
bugs in the application.

An important feature of Windows security is that applications can make use of
the Windows security framework for user-defined objects. For example, a database
server might create it own security descriptors and attach them to portions of a
database. In addition to normal read/write access constraints, the server could se-
cure database-specific operations, such as scrolling within a result set or performing
a join. It would be the server’s responsibility to define the meaning of special rights
and perform access checks. But the checks would occur in a standard context, using
systemwide user/group accounts and audit logs. The extensible security model
should prove useful to implementers of foreign files systems.

15.7 RECOMMENDED READING AND WEB SITES

The topics in this chapter are covered in more detail in [STAL08].
[OGOR03] is the paper to read for an authoritative survey of user authentica-

tion. [BURR04] is also a worthwhile survey. [SAND94] is an excellent overview
of access control. [SAND96] is a comprehensive overview of RBAC. [SAUN01]

M15_STAL6329_06_SE_C15.QXD 2/22/08 8:43 PM Page 701

