
© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

Appendix A – Detailed TGE Scripting Reference

Credits
Joel Baxter – Major credit goes to Joel. Much of the data in this reference was verified against
Joel’s Resource: ‘TGE scripting language reference’ (qid=2212). Additionally, Joel has made other
excellent resources that you should check out if you are going to expand/customize the scripting
features of TGE for your game.

Conventions
Throughout this document, for succinctness, I will refer to the Torque Game Engine

Scripting language simply as Torque Script.

Syntax/Rules
Torque Script is a typeless script that is very simliar in syntax to C/C++. You will find that

most C/C++ operators function as expected in Torque Script. In addition to providing the strengths
of C/C++, Torque Script provides:

• Auto creation and destruction of local/global variables and their storage. (see exceptions
below).

• String catenation, comparison, and auto-string-constant creation (see ‘Literals’ below).

Variables

© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

Literals
Numeric:
 123 (decimal)

1.234 (floating point)
1e-3 (scientific notation)
0xabc (hex)

String:
 “abcd” (string)

‘abcd’ (tagged string)
a1234 (auto-string constant; any alpha followed by alpha or numberic)

Special String Constants:
TAB (tab)
SPC (space)
NL (newline)

Escape Sequences (must be enclosed in double-quotes):
 \n (newline)
 \t (tab)
 \c0 … \c9 (colorize subsequent output in console)
 \\ (backslash)

Boolean:

The boolean type is present but auto-converts to a numeric (true�1; false�0).

Array:

Torque Script does not support array literals. Don’t take this to mean it doesn’t support
arrays, just array literals.

Vector:
 Torque Script supports a special type of literal called the ‘vector’ literal. You may
encounter this special literal in scripts and assume that it is a string. It takes the general form:
“numeric numeric numeric” where the numeric can be any legal numeric type.

© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

Operators in TGE

Operator Name Example Explanation

Variable Operators
$ global $a $a is a global variable.
% local %b %b is a local variable.

Arithmetic Operators
* multiplication $a * $b Multiply $a and $b.
/ division $a / $b Divide $a by $b.

% modulo $a % $b Remainder of $a divided by $b.
+ addition $a + $b Add $a and $b.
- subtraction $a - $b Subtract $b from $a.

++ auto-increment
(post-fix only)

$a++ Increment $a after use.
Note: ++$a is illegal.

- - auto-decrement
(post-fix only)

$b-- Decrement $b after use.
Note: --$b is illegal.

Relational and Logical Operators

< Less than $a < $b 1 if $a is less than % b
0 otherwise.

> More than $a > $b 1 if $a is greater than % b
0 otherwise.

<= Less than or Equal to $a <= $b 1 if $a is less than or equal to % b
0 otherwise.

>= More than or Equal to $a >= $b 1 if $a is greater than or equal to % b
0 otherwise.

== Equal to $a == $b 1 if $a is equal to % b
0 otherwise.

!= Not equal to $a != $b 1 if $a is not equal to % b
0 otherwise.

! Logical NOT !$a 1 if $a is 0
0 otherwise.

&& Logical AND $a && $b 1 if $a and $b are both non-zero
0 otherwise.

|| Logical OR 1 if either $a or $b is non-zero
0 otherwise.

Bitwise Operators

~ Bitwise complement ~$a flip bits 1 to 0 and 0 to 1. (i.e. ~10b == 01b)
& Bitwise AND $a & $b composite of elements where bits in same

position are 1. (i.e. 1b & 1b == 1b)
| Bitwise OR $a | $b composite of elements where bits 1 in either of

the two elements. (i.e. 100b & 001b == 101b)
^ Bitwise XOR $a ^ $b composite of elements where bits in same

position are opposite.
(i.e. 100b & 101b == 001b)

<< Left Shift $a << 3 element shifted left by 3 and padded with zeros.
(i.e. 11b << 3d == 11000b)

>> Right Shift $a >> 3 element shifted right by 3 and padded with
zeros. (i.e. 11010b >> 3d == 00011b)

© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

Operators in TGE (cont’d)

Operator Name Example Explanation

Assignment Operators
= Assignment $a = $b; Assign value of $b to $a.

op= Compound Assignment $a op= $b; Equivalent to $a = $a op $b.
op can be any of:
* / % + - & | ^ << >>

String Operators/Constants

@ String catenation $c @ $d Concatenates strings $c and $d into a single
string.
Numeric literals/variables convert to strings.

NL New Line $c NL $d Same as catenation example with new-line
between $c and $d.

TAB Tab $c TAB $d Same as catenation example with tab between
$c and $d.

SPC Space $c SPC $d Same as catenation example with space
between $c and $d.

$= String equal to $c $= $d 1 if $c equal to $d .
!$= String not equal to $c !$= $d 1 if $c not equal to $d.

Miscellaneous Operators

? : Conditional x ? y : z Substitute y if x equal to 1, else substitute z.
[] Array element $a[5] Sixth element or array $a
. Member/Method

selection

() Grouping
{ } Blocking
, Listing
:: Namespace
“ “ String constant

(normal)

‘ ‘ String constant
(tagged)

© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

Keywords

break case continue datablock default
else false for function if
new or package parent return

switch switch$ true while

Note: Although keywords are not reserved, it is considered bad practice to use variables that have
the same spelling as a keyword.

Note2: All examples in this section can be cut and pasted directly into the console unless otherwise
noted.

break

Purpose
Use break to exit the innermost for or while loop. break can also be used to exit
a switch or switch$ statement.

Console Example
==> %count = 0; while(1) { echo(%count++); if (%count > 2) break; }
1
2
3

See Also
case, if, switch, switch$, while

case

Purpose
Used to label cases in a switch or switch$ statement.

Example
See switch and switch$ examples.

See Also
break, switch, switch$

© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

continue

Purpose
The continue keyword causes the script to skip the remainder of the innermost
loop in which it appears;

Console Example
==> %count = 0; while(%count++ < 8) { if (%count > 2) continue; echo(%count); }
1
2

See Also
for, while

datablock

Purpose
A short statement explaining the purpose and use of this function call

Example
Give a clear and concise example program section containing this function.

See Also
Mention related function names.

x

© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

default

Purpose
This labels the default case in a switch or switch$ statement. i.e. the case that is
executed if no other cases matche the switch/switch$ value.

Note: The default keyword must be listed after all case keywords. It is a syntax
error to place it before subsequent case keywords.

Example
See switch and switch$ examples.

See Also
break, switch, switch$

else

Purpose
The else keyword is used with the if keyword to control the flow of a script. The
general form of the well known if-then-else construct is as follows,

if (expression) { statement(s); } else { alternate statement(s); }

Where the alternate statement(s) are executed if the expression evaluates to 0.

Console Example
See if example.

See Also
if

© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

false

Purpose
The false keyword is used for boolean comparison and evalulates to 0.

Console Example
==> if(false == 0) { echo(“false evaulates to” SPC 0); }
false evaluates to 0

See Also
if, true

© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

for

Purpose
The for keyword is a looping construct whose general form is:

for (expression0; expression1; expression2) {
 statements(s);
}

Where:

• expression0 is usually of the form: variable = value
• expression1 is usually of the form: variable compare op value
• expression2 is usally of the form: variable op OR variable op value

, and the loop continues to execute statement(s) until expression0 evaluates to
false (i.e. 0).

Note: Unlike C and C++ expression0, expression1, and expression2 are all
required. If you absolutely need expression0 or expression2 to be empty just
insert a 0.
Note2: Composite expressions of the form (sub_expression0,sub_expression1,
… sub_expressionN) are illegal.

Console Example
==> for(%value = 0; %value < 3; %value++) { echo(%value);}
0
1
2
==> %value = 0; for(0; %value < 3; 0) { echo(%value); %value ++;}
0
1
2

See Also
break, continue

© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

function

Purpose
A short statement explaining the purpose and use of this function call

Script Example
Give a clear and concise example program section containing this function.

See Also
Mention related function names.

if

Purpose
The if keyword is used with or without the else keyword to control the flow of a
script. The general form of the well known if-then-else construct is as follows,

if (expression) {
 statement(s);
} else {
 alternate statement(s);
}

Where the statement(s) are executed if the expression evaluates to a non-zero value.

Console Example
==> if(0) { echo(“hello”); } else { echo(“goodbye”); }
goodbye
==> if(5) { echo(“hello”); } else { echo(“goodbye”); }
hello

See Also
else

© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

new

Purpose
A short statement explaining the purpose and use of this function call

Example
Give a clear and concise example program section containing this function.

See Also
Mention related function names.

or

Purpose
TBD may not be correct

Example
Give a clear and concise example program section containing this function.

See Also
Mention related function names.

x

package

Purpose
A short statement explaining the purpose and use of this function call

Example
Give a clear and concise example program section containing this function.

See Also
Mention related function names.

© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

parent

Purpose
A short statement explaining the purpose and use of this function call

Example
Give a clear and concise example program section containing this function.

See Also
Mention related function names.

x

return

Purpose
The return keyword is used to return a value from a function

Console Example
==> function equal_to(%arg0, %arg1) { return (%arg0 == %arg1); }
==> echo(equal_to(10,11));
0
==> echo(equal_to(11,11));
1

See Also
function

© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

switch

Purpose
The switch keyword is used to control the flow of a script. The general form of a
switch statement is as follows:

switch (expression) {
case value0:
 statement(s);
 break;
case value1:
 statement(s);
 break;
. . .
case valueN:
 statement(s);
 break;
default:
 statement(s);
}

Where expression is evaluated and the subsequently compared to the following
case values. If a case matches the evaluated expression, the statement(s)
associated with that case are executed. If no values match and a default
statement exists, the statement(s) in the default case will be executed.

switch is used ONLY for expressions that evaluate to a numeric value.

Note: Unlike C/C++, the break statements in switches are superfluous. Torque
Script will only execute matching cases and NOT automatically execute all
subsequent cases. This is proven in the example below.

Example
==> switch(%tmp = 1) { case 0: echo(0); case 1: echo(1); default: echo("proof"); }
1

See Also
break, case, default, switch$

© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

switch$

Purpose
The switch$ keyword is used to control the flow of a script. The general form of
a switch statement is as follows:

switch (expression) {
case string_value0:
 statement(s);
 break;
case string_value1:
 statement(s);
 break;
. . .
case string_valueN:
 statement(s);
 break;
default:
 statement(s);
}

Where expression is evaluated and subsequently compared to the following case
values. If a case string_value matches the evaluated expression, the
statement(s) associated with that case are executed. If no values match and a
default statement exists, the statement(s) in the default case will be executed.

switch$ is used ONLY for expressions that evaluate to a string value.

Note: Unlike C/C++, the break statements in switches are superfluous. Torque
Script will only execute matching cases and NOT automatically execute all
subsequent cases.

Example
==> switch$(%tmp = “hi”) { case “bye”: echo(“bye”); case “hi”: echo(“hi”); }
hi

See Also
break, case, default, switch

© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

true

Purpose
The true keyword is used for boolean comparison and evalulates to 1.

Console Example
==> if(true == 1) { echo(“true evaulates to” SPC 1); }
true evaluates to 1

See Also
if, true

x

while

Purpose
The while keyword is a looping construct whose general form is:

while (expression) {
 statements(s);
}

Where expression is usually of the form: variable compare op value, and the loop
continues to execute statement(s) until expression evaluates to false (i.e. 0).

Console Example
==> %val=5; while(%val) { echo(%val--); }
4
3
2
1
0

See Also
Mention related function names.

x

function_name

© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

Purpose
A short statement explaining the purpose and use of this function call

Example
Give a clear and concise example program section containing this function.

See Also
Mention related function names.

x

function_name

Purpose
A short statement explaining the purpose and use of this function call

Example
Give a clear and concise example program section containing this function.

See Also
Mention related function names.

x

function_name

Purpose
A short statement explaining the purpose and use of this function call

Example
Give a clear and concise example program section containing this function.

See Also
Mention related function names.

x

© Hall Of Worlds, LLC. All rights reserved.

© Hall Of Worlds, LLC. All rights reserved.

Scope and Visibility
Discuss namespaces here.

Functions and Methods
All

Packages
All

Arithmetics Ops
All

Conversion Ops
All

Arrays and Other Structures
All

Regular expressions
All

Search and Replace Functions
All

File Operations
All

I/O
All

System Interaction
All

Networking
All

Special
All

The Console
All

