
A-22

 APPENDIX B

 PROGRAMMING AND OPERATING
SYSTEM PROJECTS

 B.1 OS/161
 B.2 Simulations
 B.3 Programming Projects

 Textbook-Defi ned Projects
 Additional Major Programming Projects
 Small Programming Projects

 B.4 Research Projects
 B.5 Reading/Report Assignments
 B.6 Writing Assignments
 B.7 Discussion Topics
 B.8 BACI

Z02_STAL9981_07_SE_APPB.indd A-22Z02_STAL9981_07_SE_APPB.indd A-22 10/01/11 2:48 PM10/01/11 2:48 PM

B.1 / OS/161 A-23

 Analysis and observation, theory and experience must never disdain
or exclude each other; on the contrary, they support each other.

 — ON WAR , Carl Von Clausewitz

 Many instructors believe that implementation or research projects are crucial to
the clear understanding of operating system concepts. Without projects, it may be
difficult for students to grasp some of the basic OS abstractions and interactions
among components; a good example of a concept that many students find difficult
to master is that of semaphores. Projects reinforce the concepts introduced in this
book, give the student a greater appreciation of how the different pieces of an OS fit
together, and can motivate students and give them confidence that they are capable
of not only understanding but also implementing the details of an OS.

 In this text, I have tried to present the concepts of OS internals as clearly
as possible and have provided numerous homework problems to reinforce those
concepts. Many instructors will wish to supplement this material with projects. This
appendix provides some guidance in that regard and describes support material
available at the instructor’s Web site. The support material covers eight types of
projects and other student exercises:

 • OS/161 projects

 • Simulation projects

 • Programming projects

 • Research projects

 • Reading/report assignments

 • Writing assignments

 • Discussion topics

 • BACI

 B.1 OS/161

 The Instructor’s Resource Center (IRC) for this book provides support for using
OS/161 as an active learning component.

 OS/161 is an educational operating system developed at Harvard University
[HOLL02]. It aims to strike a balance between giving students experience in work-
ing on a real operating system, and potentially overwhelming students with the
complexity that exists in a fully-fledged operating system, such as Linux. Compared
to most deployed operating systems, OS/161 is quite small (approximately 20,000
lines of code and comments), and therefore it is much easier to develop an under-
standing of the entire code base.

 The source code distribution contains a full operating system source tree,
including the kernel, libraries, various utilities (ls, cat,…), and some test programs.
OS/161 boots on the simulated machine in the same manner as a real system might
boot on real hardware.

Z02_STAL9981_07_SE_APPB.indd A-23Z02_STAL9981_07_SE_APPB.indd A-23 10/01/11 2:48 PM10/01/11 2:48 PM

A-24 APPENDIX B / PROGRAMMING AND OPERATING SYSTEM PROJECTS

 System/161 simulates a “real” machine to run OS/161 on. The machine fea-
tures a MIPS R2000/R3000 CPU including an MMU, but no floating-point unit or
cache. It also features simplified hardware devices hooked up to the system bus.
These devices are much simpler than real hardware, and thus make it feasible for
students to get their hands dirty without having to deal with the typical level of
complexity of physical hardware. Using a simulator has several advantages: Unlike
other software students write, buggy OS software may result in completely locking
up the machine, making it difficult to debug and requiring a reboot. A simulator
enables debuggers to access the machine below the software architecture level as
if debugging was built into the CPU. In some senses, the simulator is similar to an
in-circuit emulator (ICE) that you might find in industry, only it is implemented in
software. The other major advantage is the speed of reboots. Rebooting real hard-
ware takes minutes, and hence the development cycle can be frustratingly slow on
real hardware. System/161 boots OS/161 in mere seconds.

 The OS/161 and System/161 simulators can be hosted on a variety of plat-
forms, including Unix, Linux, Mac OS X, and Cygwin (the free Unix environment
for Windows).

 The IRC includes the following:

 • Package for instructor’s Web server: A set of html and pdf files that can be
easily uploaded to the instructor’s site for the OS course, which provide all
the online resources for OS/161 and S/161 access, user’s guides for students,
assignments, and other useful material.

 • Getting started for instructors: This guide lists all of the files that make up the
Web site for the course and instructions on how to set up the Web site.

 • Getting started for students: This guide explains to students step-by-step how
to download and install OS/161 and S/161 on their PC.

 • Background material for students: This consists of two documents that pro-
vide an overview of the architecture of S/161 and the internals of OS/161.
These overviews are intended to be sufficient so that the student is not over-
whelmed with figuring out what these systems are.

 • Student exercises: A set of exercises that cover some of the key aspects of
OS internals, including support for system calls, threading, synchronization,
locks and condition variables, scheduling, virtual memory, files systems, and
security

 The IRC OS/161 package was prepared by Andrew Peterson and other
 colleagues and students at the University of Toronto.

 B.2 SIMULATIONS

 The IRC provides support for assigning projects based on a set of simulations devel-
oped at the University of Texas, San Antonio. Table B.1 lists the simulations by
chapter. The simulators are all written in Java and can be run either locally as a Java
application or online through a browser.

Z02_STAL9981_07_SE_APPB.indd A-24Z02_STAL9981_07_SE_APPB.indd A-24 10/01/11 2:48 PM10/01/11 2:48 PM

B.3 / PROGRAMMING PROJECTS A-25

 Table B.1 OS Simulations by Chapter

 Chapter 5 – Concurrency: Mutual Exclusion and Synchronization

 Producer-consumer Allows the user to experiment with a bounded buffer
synchronization problem in the context of a single
producer and a single consumer

 UNIX Fork-pipe Simulates a program consisting of pipe , dup2 ,
 close , fork , read , write , and print instructions

 Chapter 6 – Concurrency: Deadlock and Starvation

 Starving philosophers Simulates the dining philosophers problem

 Chapter 8 – Virtual Memory

 Address translation Used for exploring aspects of address translation. It
supports 1- and 2-level page tables and a translation
lookaside buffer

 Chapter 9 – Uniprocessor Scheduling

 Process scheduling Allows users to experiment with various process
scheduling algorithms on a collection of processes
and to compare such statistics as throughput and
waiting time

 Chapter 11 – I/O Management and Disk Scheduling

 Disk head scheduling Supports the standard scheduling algorithms such
as FCFS, SSTF, SCAN, LOOK, C-SCAN, and
C-LOOK as well as double buffered versions of these

 Chapter 12 – File Management

 Concurrent I/O Simulates a program consisting of open , close ,
 read , write , fork , wait , pthread_create ,
 pthread_detach , and pthread_join instructions

 The IRC includes the following:

 1. A brief overview of the simulations available.

 2. How to port them to the local environment.

 3. Specific assignments to give to students, telling them specifically what they are
to do and what results are expected. For each simulation, this section provides
one or two original assignments that the instructor can assign to students.

 These simulation assignments were developed by Adam Critchley (University
of Texas at San Antonio).

 B.3 PROGRAMMING PROJECTS

 Three sets of programming projects are provided.

 Textbook-Defined Projects

 Two major programming projects, one to build a shell, or command line interpreter,
and one to build a process dispatcher are described in the online portion of the

Z02_STAL9981_07_SE_APPB.indd A-25Z02_STAL9981_07_SE_APPB.indd A-25 10/01/11 2:48 PM10/01/11 2:48 PM

A-26 APPENDIX B / PROGRAMMING AND OPERATING SYSTEM PROJECTS

textbook. The projects can be assigned after Chapter 3 and after Chapter 9 , respec-
tively. The IRC provides further information and step-by-step exercises for devel-
oping the programs.

 These projects were developed by Ian G. Graham of Griffith University,
Australia.

 Additional Major Programming Projects

 A set of programming assignments, called machine problems (MPs), are available
that are based on the Posix Programming Interface. The first of these assignments
is a crash course in C, to enable the student to develop sufficient proficiency in C to
be able to do the remaining assignments. The set consists of nine machine problems
with different difficulty degrees. It may be advisable to assign each project to a team
of two students.

 Each MP includes not only a statement of the problem but a number of C files
that are used in each assignment, step-by-step instructions, and a set of questions for
each assignment that the student must answer that indicate a full understanding of
each project. The scope of the assignments includes:

 1. Create a program to run in a shell environment using basic I/O and string
 manipulation functions.

 2. Explore and extend a simple Unix shell interpreter.

 3. Modify faulty code that utilizes threads.

 4. Implement a multithreaded application using thread synchronization
 primitives.

 5. Write a user–mode thread scheduler

 6. Simulate a time-sharing system by using signals and timers

 7. A six-week project aimed at creating a simple yet functional networked file
system. Covers I/O and file system concepts, memory management, and net-
working primitives.

 The IRC provides specific instructions for setting up the appropriate support
files on the instructor’s Web site of local server.

 These project assignments were developed at the University of Illinois at
Urbana-Champaign, Department of Computer Science and adapted by Matt Sparks
(University of Illinois at Urbana-Champagne) for use with this textbook.

 Small Programming Projects

 The instructor can also assign a number of small programming projects described in
the IRC. The projects can be programmed by the students on any available compu-
ter and in any appropriate language: They are platform and language independent.

 These small projects have certain advantages over the larger projects. Larger
projects usually give students more of a sense of achievement, but students with
less ability or fewer organizational skills can be left behind. Larger projects usually
elicit more overall effort from the best students. Smaller projects can have a higher
concepts-to-code ratio, and because more of them can be assigned, the opportu-
nity exists to address a variety of different areas. Accordingly, the instructor’s IRC

Z02_STAL9981_07_SE_APPB.indd A-26Z02_STAL9981_07_SE_APPB.indd A-26 10/01/11 2:48 PM10/01/11 2:48 PM

B.6 / WRITING ASSIGNMENTS A-27

 contains a series of small projects, each intended to be completed in a week or
so, which can be very satisfying to both student and teacher. These projects were
developed at Worcester Polytechnic Institute by Stephen Taylor, who has used and
refined the projects in the course of teaching operating systems a dozen times.

 B.4 RESEARCH PROJECTS

 An effective way of reinforcing basic concepts from the course and for teaching
students research skills is to assign a research project. Such a project could involve
a literature search as well as a Web search of vendor products, research lab activi-
ties, and standardization efforts. Projects could be assigned to teams or, for smaller
projects, to individuals. In any case, it is best to require some sort of project proposal
early in the term, giving the instructor time to evaluate the proposal for appropriate
topic and appropriate level of effort. Student handouts for research projects should
include

 • A format for the proposal

 • A format for the final report

 • A schedule with intermediate and final deadlines

 • A list of possible project topics

 The students can select one of the listed topics or devise their own comparable
project. The IRC includes a suggested format for the proposal and final report as
well as a list of possible research topics developed by Professor Tan N. Nguyen of
George Mason University.

 B.5 READING/REPORT ASSIGNMENTS

 Another excellent way to reinforce concepts from the course and to give students
research experience is to assign papers from the literature to be read and analyzed.
The IRC includes a suggested list of papers to be assigned, organized by chapter.
The Premium Content Web site provides a copy of each of the papers. The IRC also
includes a suggested assignment wording.

 B.6 WRITING ASSIGNMENTS

 Writing assignments can have a powerful multiplier effect in the learning process
in a technical discipline such as OS internals. Adherents of the Writing Across the
Curriculum (WAC) movement (http://wac.colostate.edu/) report substantial bene-
fits of writing assignments in facilitating learning. Writing assignments lead to more
detailed and complete thinking about a particular topic. In addition, writing assign-
ments help to overcome the tendency of students to pursue a subject with a mini-
mum of personal engagement, just learning facts and problem-solving techniques
without obtaining a deep understanding of the subject matter.

Z02_STAL9981_07_SE_APPB.indd A-27Z02_STAL9981_07_SE_APPB.indd A-27 10/01/11 2:48 PM10/01/11 2:48 PM

A-28 APPENDIX B / PROGRAMMING AND OPERATING SYSTEM PROJECTS

 The IRC contains a number of suggested writing assignments, organized
by chapter. Instructors may ultimately find that this is an important part of their
approach to teaching the material. I would greatly appreciate any feedback on this
area and any suggestions for additional writing assignments.

 B.7 DISCUSSION TOPICS

 One way to provide a collaborative experience is discussion topics, a number of
which are included in the IRC. Each topic relates to material in the book. The
instructor can set it up so that students can discuss a topic either in a class setting, an
online chat room, or a message board. Again, I would greatly appreciate any feed-
back on this area and any suggestions for additional discussion topics.

 B.8 BACI

 In addition to all of the support provided at the IRC, the Ben-Ari Concurrent
Interpreter (BACI) is a publicly available package that instructors may wish to use.
BACI simulates concurrent process execution and supports binary and counting
semaphores and monitors. BACI is accompanied by a number of project assign-
ments to be used to reinforce concurrency concepts.

 Appendix O provides a more detailed introduction to BACI, with information
about how to obtain the system and the assignments.

Z02_STAL9981_07_SE_APPB.indd A-28Z02_STAL9981_07_SE_APPB.indd A-28 10/01/11 2:48 PM10/01/11 2:48 PM

