Joel On Software

Fire and Motion

http://www .joelonsoftware.com/articles/fog0000000339.html

Once you get into flow it's not too hard to keep going. Many of my days go like this: (1) get into work (2) check
email, read the web, etc. (3) decide that I might as well have lunch before getting to work (4) get back from
lunch (5) check email, read the web, etc. (6) finally decide that I've got to get started (7) check email, read the
web, etc. (8) decide again that I really have to get started (9) launch the damn editor and (10) write code nonstop
until I don't realize that it's already 7:30 pm.

Somewhere between step 8 and step 9 there seems to be a bug, because I can't always make it across that
chasm.bike trip For me, just getting started is the only hard thing.

When I was an Israeli paratrooper a general stopped by to give us a little speech about strategy. In infantry
battles, he told us, there is only one strategy: Fire and Motion. You move towards the enemy while firing your
weapon. The firing forces him to keep his head down so he can't fire at you.

It doesn't matter if your code is lame and buggy and nobody wants it. If you are moving forward, writing code
and fixing bugs constantly, time is on your side.

Think of the history of data access strategies to come out of Microsoft. ODBC, RDO, DAO, ADO, OLEDB,
now ADO.NET - All New! Are these technological imperatives? The result of an incompetent design group that
needs to reinvent data access every goddamn year? (That's probably it, actually.) But the end result is just cover
fire. The competition has no choice but to spend all their time porting and keeping up, time that they can't spend
writing new features. Look closely at the software landscape. The companies that do well are the ones who rely
least on big companies and don't have to spend all their cycles catching up and reimplementing and fixing bugs
that crop up only on Windows XP.

Painless Software Schedules

Painless Software Schedules

http://www .joelonsoftware.com/articles/fog0000000245.html

Pek ¢ok yazilim geg sevkiyattan dolayr pazarda basarisiz olmustur: Lotus 123. Yazilimu ilk hazirladiklarinda o
zaman yaygin olmayan 80386 mimarisine gore gelistirdiler. 16 ay boyunca yazilimin 8086 mimarisine
uydurmak i¢in ugrastilar. Bu sirada Excel 16 ay 6ne gecti ve 8086lar piyasadan kalkti.

Netscape, Apple MacOs ve benzer pek cok yazilim geg teslimattan dolay: pazar sanslarini kaybettiler.

Ancak ¢ogu programci higbir zizelge yapmaz. Clinkii bu ¢cok zokdur veya hi¢bir ise yaramaz.

Kolay ¢izelge yapabilmek i¢in:

1. Exceli kullan. Basit bir sekilde calis.

2. Su siitunlar bulunmali:

Ozellik (Feature), Is (Task), Oncelik, ilk Tahmin, Simdiki Tahmin, Gegen Siire, Kalan Siire
3. Her bir 6zellik, ¢ok sayida isten olusmali.

4. Kodu yazacak programci ¢izelgelemeyi yapmali.

5. Ince ¢oziiniirliiklii isler tanimlanmali (2-16 saatlik)

Eger bir is 40 saatlikse, yeterince parcalanmamis demektir.

6. Ilk ve mevcut tahminleri ayr1 ayr takip et. Boylece hatalarindan 6grenebilirsin.

7. Gegen siireyi her giin giincelle. Ancak bu is 2 dakikay1 gecmemeli.

8. Debug etme siiresini ¢izelgeye dahil et.

9. Entegrasyon siiresini ¢izelgeye ekle (kod gézden gecirme gibi)

11. Tampon siireyi ekle.

12. Yoneticilerin programcilarin tahminlerini diisiirmelerine izin verme.

13. Cizelgedeki isler, tahta bloklardir. Tahta bloklar1 bir kutuya sigmazsa, bazi bloklar1 ¢ikartirsin.

Bazi 6zellikleri ¢ikartmak iki yonden yararlidir: Zamani tutturmani saglar. Gereksiz 6zelliklerle yazilin
bozmani engeller.

Advice for CS Students

http://www .joelonsoftware.com/Archive.html

Even on the small scale, when you look at any programming organization, the programmers with the most power
and influence are the ones who can write and speak in English clearly, convincingly, and comfortably. XP ve
Linuxu diisiin.

By persuading other people, they get leverage. By writing clear comments and technical specs, they let other
programmers understand their code, which means other programmers can use and work with their code instead
of rewriting it.

I won't hire a programmer unless they can write, and write well, in English.

How Microsoft lost the API War

(By the way, for those of you who follow the arcane but politically-charged world of blog syndication feed
formats, you can see the same thing happening over there. RSS became fragmented with several different
versions, inaccurate specs and lots of political fighting, and the attempt to clean everything up by creating yet
another format called Atom has resulted in several different versions of RSS plus one version of Atom,
inaccurate specs and lots of political fighting. When you try to unify two opposing forces by creating a third
alternative, you just end up with three opposing forces. You haven't unified anything and you haven't really fixed
anything.)

So you've got the Windows API, you've got VB, and now you've got .NET, in several language flavors, and

don't get too attached to any of that, because we're making Avalon, you see, which will only run on the newest
Microsoft operating system, which nobody will have for a loooong time. And personally I still haven't had time
to learn .NET very deeply, and we haven't ported Fog Creek's two applications from classic ASP and Visual
Basic 6.0 to .NET because there's no return on investment for us. None. It's just Fire and Motion as far as I'm
concerned: Microsoft would love for me to stop adding new features to our bug tracking software and content
management software and instead waste a few months porting it to another programming environment,
something which will not benefit a single customer and therefore will not gain us one additional sale, and
therefore which is a complete waste of several months, which is great for Microsoft, because they have content
management software and bug tracking software, too, so they'd like nothing better than for me to waste time
spinning cycles catching up with the flavor du jour, and then waste another year or two doing an Avalon version,
too, while they add features to their own competitive software. Riiiight.

Microsoft grew up during the 1980s and 1990s, when the growth in personal computers was so dramatic that
every year there were more new computers sold than the entire installed base. That meant that if you made a
product that only worked on new computers, within a year or two it could take over the world even if nobody
switched to your product. That was one of the reasons Word and Excel displaced WordPerfect and Lotus so
thoroughly: Microsoft just waited for the next big wave of hardware upgrades and sold Windows, Word and
Excel to corporations buying their next round of desktop computers (in some cases their first round).

The Joel Test: 12 Steps to Better Code

http://www.joelonsoftware.com/articles/fog0000000043.html
SEI ‘1n hazirladidi SEMA adli dederlendirme kriterlerinin Ozeti.
12 tane soru.

)Do you use source control?

)Can you make a build in one step?

)Do you make daily builds?

)Do you have a bug database?

)Do you fix bugs before writing new code?

)Do you have an up-to-date schedule?

)Do you have a spec?

)Do programmers have quiet working conditions?
)Do you use the best tools money can buy?

)Do you have testers?

0)Do new candidates write code during their interview?
1)Do you do hallway usability testing?

Can you make a build in one step?

Tek bir script ile her sey temelden hazirlanir.

i1k ii¢ adim: Siirekli Entegrasyonun adimlari.

Bug Veritabani:

Buglar silirekli takip edilmeli. Basit olmali ama en azindan su verileri igermeli:

ecomplete steps to reproduce the bug
ecxpected behavior

eobserved (buggy) behavior

ewyho it's assigned to

eyhether it has been fixed or not

Yeni kod yazmadan once buglari diizelt:

Microsoft Word. Oliim yolculugu. Siirekli zaman baskisindan dolayi siirekli yeni fonksiyonalite eklemek.
Ancak bu arada mevcut buglarin siirekli yollari tikamasi.

Sakin galisma ortami:

Dikkat dagilmamali. 15 saniye kazanmak ig¢in insanlar bdliinmemeli. Bir insanin flow denilen yodun
odaklanma evresine geg¢mesi 15 dakika aliyor.

Koridor kullanislilik testi:

Koridorda gdrdiigiin insanlara uygulamani test ettir. Kolay kullanilabiliyor mu, onlar ag¢isindan O6gren.
Kullanislilik problemlerinin %95 1 bu sekilde halledilebilir, diyor yazar.

Bedava UI tasarimi kitabi: http://www.joelonsoftware.com/uibook/chapters/fog0000000057.html

Acisiz Bug Takibi

http://www.joelonsoftware.com/articles/fog0000000029.html

Gergek bir bug takibi uygulamasi kullanilmali diye tavsiye ediyor Joel. Excel tablolari gibi
uygulamalarin takip etmeyi saglayamayacadini sdyliiyor. (Starteam, FogBugz, bedava yazilimlar)

Veritabani gelistiricileri emaille haberdar eder, dedisikliklerden.

Ornek bir bug takip raporu:
file:///F:\Belgelerim\Notlarim\Java%$20Notlarim\Resimler\Makaleler\Bug.doc
Bir bug raporunda bulunmasi gereken {i¢ olmazsa olmaz sey:

1. Bugi yeniden iretmenin adimlari

2. Ne gormeyi bekliyordun

3. Bunun yerine ne oldu

Bugil agan kisi birine atayabilir. Atanan kisi de ¢6zebilir veya baskasina atayabilir. Ancak bugin
kapatilmasini sadece acgan kisi yapabilir.

Farkli insanlar ¢o6zildiglini—onari11ldigini diislinerek birakabilir. Acan kisi tekrar dener. EJer hala bug
duruyorsa, o zaman yeniden aktive eder.

Coziilmigliikk durumlara:
fixed, won't fix, postponed, not repro, duplicate, or by design

Versiyon takibinin bulundudu varsayiliyor.

Acisiz Yazilim Takvimleri

http://www.joelonsoftware.com/articles/fog0000000245.html

Basit bir arag¢ kullan. Excel gibi. Project kullanma, c¢iinkil bu bagimliliklara odaklanir.
file:///F:\Belgelerim\Notlarim\Java%20Notlarim\Resimler\Makaleler\11l.gif

Ozellik / Is bdliistiirmesi yap. Ozellikler islerden olussun.

isler 2 - 16 saat arasi olsun. Yani cok ufak.

Cok kiiglik parcgalara bdlmek, tahminleri gliglendirir. Ciinkd falan metodun ne kadar slirecedini bilmezsin.
Ama diyalog olusturmanin, splash olusturmanin ne kadar slirecedini tahmin edebilirsin.

Gegen zaman sitununu her giinin sonunda giincelle. Bu is iki dakikada yapilabilmeli. Silirekli saat takibi
yapmana gerek yok. Tahmin et. 8 saat lizerinden dadit, baska islerle udrasmis olsan bile.

EJer isler yetismiyorsa, yetisecek gibi davranma, zorlama. Bunun yerine Oncelikli olmayanlari bir
sonraki siirime birak. (Belki bunlara hi¢ ihtiyacin olmayacak bile.)

