
TT HE HE WW INDOWS INDOWS OO PERATING PERATING SS Y S T E MY S T E M

William Stallings

This document is an extract from
Operating Systems: Internals and Design Principles, Fifth Edition
Prentice Hall, 2005, ISBN 0-13-147954-7

Copyright 2005 William Stallings

-2-

TT ABLE OF ABLE OF CC O N T E N T SO N T E N T S

2.5 MICROSOFT WINDOWS OVERVIEW...3
History..3
Single-User Multitasking ...5
Architecture..7

Operating System Organization...7
User-Mode Processes...10

Client/Server Model...11
Threads and SMP...13
Windows Objects ...13

4.4 WINDOWS THREAD AND SMP MANAGEMENT...17
Process and Thread Objects ...18
Multithreading..22
Thread States..22
Support for OS Subsystems ...23
Symmetric Multiprocessing Support ...24

6.10 WINDOWS CONCURRENCY MECHANISMS..25
Wait Functions ...25
Synchronization Objects ..25
Critical Section Objects ...26

8.5 WINDOWS MEMORY MANAGEMENT..29
Windows Virtual Address Map..29
Windows Paging ..30

10.5 WINDOWS SCHEDULING ..32
Process and Thread Priorities...32
Multiprocessor Scheduling ..33

11.10 WINDOWS I/O...35
Basic I/O Modules ...35
Asynchronous and Synchronous I/O..36
Software RAID ..37

12.9 WINDOWS FILE SYSTEM...38
Key Features of NTFS ...38
NTFS Volume and File Structure ..39

NTFS Volume Layout..41
Master File Table ...41

Recoverability ..43
14.5 WINDOWS CLUSTER SERVER..45
16.6 WINDOWS SECURITY ..47

Access Control Scheme ...47
Access Token ...48
Security Descriptors...49

-3-

2.5 MICROSOFT WINDOWS OVERVIEW

In this section, we provide an overview of Microsoft Windows.

History

The story of Windows begins with a very different operating system, developed by Microsoft for

the first IBM personal computer and referred to as MS-DOS or PC-DOS. The initial version,

DOS 1.0, was released in August 1981. It consisted of 4000 lines of assembly language source

code and ran in 8 Kbytes of memory using the Intel 8086 microprocessor.

When IBM developed a hard disk-based personal computer, the PC XT, Microsoft

developed DOS 2.0, released in 1983. It contained support for the hard disk and provided for

hierarchical directories. Heretofore, a disk could contain only one directory of files, supporting a

maximum of 64 files. While this was adequate in the era of floppy disks, it was too limited for a

hard disk, and the single-directory restriction was too clumsy. This new release allowed

directories to contain subdirectories as well as files. The new release also contained a richer set

of commands embedded in the operating system to provide functions that had to be performed by

external programs provided as utilities with release 1. Among the capabilities added were several

UNIX-like features, such as I/O redirection, which is the ability to change the input or output

identity for a given application, and background printing. The memory-resident portion grew to

24 Kbytes.

When IBM announced the PC AT in 1984, Microsoft introduced DOS 3.0. The AT

contained the Intel 80286 processor, which provided extended addressing and memory protection

features. These were not used by DOS. To remain compatible with previous releases, the

operating system simply used the 80286 as a "fast 8086." The operating system did provide

support for new keyboard and hard disk peripherals. Even so, the memory requirement grew to

36 Kbytes. There were several notable upgrades to the 3.0 release. DOS 3.1, released in 1984,

contained support for networking of PCs. The size of the resident portion did not change; this

-4-

was achieved by increasing the amount of the operating system that could be swapped. DOS 3.3,

released in 1987, provided support for the new line of IBM machines, the PS/2. Again, this

release did not take advantage of the processor capabilities of the PS/2, provided by the 80286

and the 32-bit 80386 chips. The resident portion at this stage had grown to a minimum of 46

Kbytes, with more required if certain optional extensions were selected.

By this time, DOS was being used in an environment far beyond its capabilities. The

introduction of the 80486 and then the Intel Pentium chip provided power and features that

simply could not be exploited by the simple-minded DOS. Meanwhile, beginning in the early

1980s, Microsoft began development of a graphical user interface (GUI) that would be

interposed between the user and DOS. Microsoft's intent was to compete with Macintosh, whose

operating system was unsurpassed for ease of use. By 1990, Microsoft had a version of the GUI,

known as Windows 3.0, which incorporated some of the user friendly features of Macintosh.

However, it was still hamstrung by the need to run on top of DOS.

After an abortive attempt by Microsoft to develop with IBM a next-generation operating

system, which would exploit the power of the new microprocessors and which would incorporate

the ease-of-use features of Windows, Microsoft struck out on its own and developed a new

operating system from the ground up, Windows NT. Windows NT exploits the capabilities of

contemporary microprocessors and provides multitasking in a single-user or multiple-user

environment.

The first version of Windows NT (3.1) was released in 1993, with the same GUI as

Windows 3.1, another Microsoft operating system (the follow-on to Windows 3.0). However,

NT 3.1 was a new 32-bit operating system with the ability to support older DOS and Windows

applications as well as provide OS/2 support.

After several versions of NT 3.x, Microsoft released NT 4.0. NT 4.0 has essentially the

same internal architecture as 3.x. The most notable external change is that NT 4.0 provides the

same user interface as Windows 95. The major architectural change is that several graphics

components that ran in user mode as part of the Win32 subsystem in 3.x have been moved into

-5-

the Windows NT Executive, which runs in kernel mode. The benefit of this change is to speed up

the operation of these important functions. The potential drawback is that these graphics

functions now have access to low-level system services, which could impact the reliability of the

operating system.

In 2000, Microsoft introduced the next major upgrade, now called Windows 2000. Again,

the underlying Executive and kernel architecture is fundamentally the same as in NT 4.0, but

new features have been added. The emphasis in Windows 2000 is the addition of services and

functions to support distributed processing. The central element of Windows 2000's new features

is Active Directory, which is a distributed directory service able to map names of arbitrary

objects to any kind of information about those objects.

One final general point to make about Windows 2000 is the distinction between Windows

2000 Server and Windows 2000 desktop. In essence, the kernel and executive architecture and

services remain the same, but Server includes some services required to use as a network server.

In 2001, the latest desktop version of Windows was released, known as Windows XP. Both

home PC and business workstation versions of XP are offered. Also in 2001, a 64-bit version of

XP was introduced. In 2003, Microsoft introduced a new server version, known as Windows

Server 2003; both 32-bit and 64 bit versions are available. The 64-bit versions of XP and Server

2003 are designed specifically for the 64-bit Intel Itanium hardware.

Single-User Multitasking

Windows (from Windows 2000 onward) is a significant example of what has become the new

wave in microcomputer operating systems (other examples are OS/2 and MacOS). Windows was

driven by a need to exploit the processing capabilities of today's 32-bit microprocessors, which

rival mainframes and minicomputers of just a few years ago in speed, hardware sophistication,

and memory capacity.

One of the most significant features of these new operating systems is that, although they

are still intended for support of a single interactive user, they are multitasking operating systems.

-6-

Two main developments have triggered the need for multitasking on personal computers,

workstations, and servers. First, with the increased speed and memory capacity of

microprocessors, together with the support for virtual memory, applications have become more

complex and interrelated. For example, a user may wish to employ a word processor, a drawing

program, and a spreadsheet application simultaneously to produce a document. Without

multitasking, if a user wishes to create a drawing and paste it into a word processing document,

the following steps are required:

1. Open the drawing program.

2. Create the drawing and save it in a file or on a temporary clipboard.

3. Close the drawing program.

4. Open the word processing program.

5. Insert the drawing in the correct location.

If any changes are desired, the user must close the word processing program, open the

drawing program, edit the graphic image, save it, close the drawing program, open the word

processing program, and insert the updated image. This becomes tedious very quickly. As the

services and capabilities available to users become more powerful and varied, the single-task

environment becomes more clumsy and user unfriendly. In a multitasking environment, the user

opens each application as needed, and leaves it open. Information can be moved around among a

number of applications easily. Each application has one or more open windows, and a graphical

interface with a pointing device such as a mouse allows the user to navigate quickly in this

environment.

A second motivation for multitasking is the growth of client/server computing. With

client/server computing, a personal computer or workstation (client) and a host system (server)

are used jointly to accomplish a particular application. The two are linked, and each is assigned

that part of the job that suits its capabilities. Client/server can be achieved in a local area network

-7-

of personal computers and servers or by means of a link between a user system and a large host

such as a mainframe. An application may involve one or more personal computers and one or

more server devices. To provide the required responsiveness, the operating system needs to

support sophisticated real-time communication hardware and the associated communications

protocols and data transfer architectures while at the same time supporting ongoing user

interaction.

The foregoing remarks apply to the Professional version of Windows. The Server version is

also multitasking but may support multiple users. It supports multiple local server connections as

well as providing shared services used by multiple users on the network. As an Internet server,

Windows may support thousands of simultaneous Web connections.

Architecture

Figure 2.13 illustrates the overall structure of Windows 2000; later releases of Windows have

essentially the same structure at this level of detail. Its modular structure gives Windows

considerable flexibility. It is designed to execute on a variety of hardware platforms and supports

applications written for a variety of other operating systems. As of this writing, Windows is only

implemented on the Intel Pentium/x86 and Itanium hardware platforms.

As with virtually all operating systems, Windows separates application-oriented software

from operating system software. The latter, which includes the Executive, the kernel, device

drivers, and the hardware abstraction layer, runs in kernel mode. Kernel mode software has

access to system data and to the hardware. The remaining software, running in user mode, has

limited access to system data.

Operating System Organization

Windows does not have a pure microkernel architecture but what Microsoft refers to as a

modified microkernel architecture. As with a pure microkernel architecture, Windows is highly

modular. Each system function is managed by just one component of the operating system. The

User mode

Kernel mode

Figure 2.13 Windows 2000 Architecture [SOLO00]

Session
manager

System
threads

System service dispatcher

Winlogon
Lsass

Lsass = local security authentication server
POSIX = portable operating system interface
GDI = graphics device interface
DLL = dynamic link libraries

Colored area indicates Executive

System support
processes

Service processes Applications Environment
subsystems

Service control
manager

Services.exe

Spooler
Winmgmt.exe

SVChost.exe

User
application

Subsytem DLLs Win32

Ntdll.dll

Windows
Explorer

Task manager

(Kernel-mode callable interfaces)
Win32 USER,

GDI

Graphics
drivers

Hardware abstraction layer (HAL)

File system
 cache

O
bject m

anager

Plug and play
m

anager

Pow
er m

anager

Security reference
m

onitor

Virtual m
em

ory

Processes and
threads

C
onfiguration

m
anager (registry)

Local procedure
call

POSIX

OS/2

Device
and file
system
drivers

I/O manager

Kernel

-8-

rest of the operating system and all applications access that function through the responsible

component using a standard interface. Key system data can only be accessed through the

appropriate function. In principle, any module can be removed, upgraded, or replaced without

rewriting the entire system or its standard application program interface (APIs). However, unlike

a pure microkernel system, Windows is configured so that many of the system functions outside

the microkernel run in kernel mode. The reason is performance. The Windows developers found

that using the pure microkernel approach, many non-microkernel functions required several

process or thread switches, mode switches, and the use of extra memory buffers.

The kernel-mode components of Windows are the following:

• Executive: Contains the base operating system services, such as memory management,

process and thread management, security, I/O, and interprocess communication.

• Kernel: Consists of the most used and most fundamental components of the operating

system. The kernel manages thread scheduling, process switching, exception and interrupt

handling, and multiprocessor synchronization. Unlike the rest of the Executive and the user

level, the kernel's own code does not run in threads. Hence, it is the only part of the

operating system that is not preemptible or pageable.

• Hardware abstraction layer (HAL): Maps between generic hardware commands and

responses and those unique to a specific platform. It isolates the operating system from

platform-specific hardware differences. The HAL makes each machine's system bus, direct

memory access (DMA) controller, interrupt controller, system timers, and memory module

look the same to the kernel. It also delivers the support needed for symmetric

multiprocessing (SMP), explained subsequently.

• Device drivers: Include both file system and hardware device drivers that translate user I/O

function calls into specific hardware device I/O requests.

• Windowing and graphics system: Implements the graphical user interface (GUI)

functions, such as dealing with windows, user interface controls, and drawing.

-9-

The Windows Executive includes modules for specific system functions and provides an

API for user-mode software. Following is a brief description of each of the Executive modules:

• I/O manager: Provides a framework through which I/O devices are accessible to

applications, and is responsible for dispatching to the appropriate device drivers for further

processing. The I/O manager implements all the Windows I/O APIs and enforces security

and naming for devices and file systems (using the object manager). Windows I/O is

discussed in Chapter 11.

• Cache manager: Improves the performance of file-based I/O by causing recently

referenced disk data to reside in main memory for quick access, and by deferring disk

writes by holding the updates in memory for a short time before sending them to the disk.

• Object manager: Creates, manages, and deletes Windows Executive objects and abstract

data types that are used to represent resources such as processes, threads, and

synchronization objects. It enforces uniform rules for retaining, naming, and setting the

security of objects. The object manager also creates object handles, which consist of access

control information and a pointer to the object. Windows objects are discussed later in this

section.

• Plug and play manager: Determines which drivers are required to support a particular

device and loads those drivers.

• Power manager: Coordinates power management among various devices and can be

configured to reduce power consumption by putting the processor to sleep.

• Security reference monitor: Enforces access-validation and audit-generation rules. The

Windows object-oriented model allows for a consistent and uniform view of security, right

down to the fundamental entities that make up the Executive. Thus, Windows uses the

same routines for access validation and for audit checks for all protected objects, including

-10-

files, processes, address spaces, and I/O devices. Windows security is discussed in Chapter

15.

• Virtual memory manager: Maps virtual addresses in the process's address space to

physical pages in the computer's memory. Windows virtual memory management is

described in Chapter 8.

• Process/thread manager: Creates and deletes objects and tracks process and thread

objects. Windows process and thread management are described in Chapter 4.

• Configuration manager: Responsible for implementing and managing the system registry,

which is the repository for both systemwide and per-user settings of various parameters.

• Local procedure call (LPC) Facility: Enforces a client/server relationship between

applications and executive subsystems within a single system, in a manner similar to a

remote procedure call (RPC) facility used for distributed processing.

User-Mode Processes

Four basic types of user-mode processes are supported by Windows:

• Special system support processes: Include services not provided as part of the Windows

operating system, such as the logon process and the session manager.

• Service processes: Other Windows services such as the event logger.

• Environment subsystems: Expose the native Windows services to user applications and

thus provide an operating system environment or personality. The supported subsystems

are Win32, Posix, and OS/2. Each environment subsystem includes dynamic link libraries

(DLLs) that convert the user application calls to Windows calls.

• User applications: Can be one of five types: Win32, Posix, OS/2, Windows 3.1, or MS-

DOS.

-11-

Windows is structured to support applications written for Windows 2000 and later releases,

Windows 98, and several other operating systems. Windows provides this support using a single,

compact Executive through protected environment subsystems. The protected subsystems are

those parts of Windows that interact with the end user. Each subsystem is a separate process, and

the Executive protects its address space from that of other subsystems and applications. A

protected subsystem provides a graphical or command-line user interface that defines the look

and feel of the operating system for a user. In addition, each protected subsystem provides the

API for that particular operating environment. This means that applications created for a

particular operating environment may run unchanged on Windows, because the operating system

interface that they see is the same as that for which they were written. So, for example, OS/2-

based applications can run under the Windows operating system without modification.

Furthermore, because the Windows system is itself designed to be platform independent, through

the use of the hardware abstraction layer (HAL), it should be relatively easy to port both the

protected subsystems and the applications they support from one hardware platform to another.

In many cases, a recompile is all that should be required.

The most important subsystem is Win32. Win32 is the API implemented on both Windows

2000 and later releases and Windows 98. Some of the features of Win32 are not available in

Windows 98, but those features implemented on Windows 98 are identical with those of

Windows 2000 and later releases.

Client/Server Model

The Executive, the protected subsystems, and the applications are structured using the

client/server computing model, which is a common model for distributed computing and which

is discussed in Part Six. This same architecture can be adopted for use internal to a single system,

as is the case with Windows.

Each environment subsystem and executive service subsystem is implemented as one or

more processes. Each process waits for a request from a client for one of its services (for

-12-

example, memory services, process creation services, or processor scheduling services). A client,

which can be an application program or another operating system module, requests a service by

sending a message. The message is routed through the Executive to the appropriate server. The

server performs the requested operation and returns the results or status information by means of

another message, which is routed through the Executive back to the client.

Advantages of a client/server architecture include the following:

• It simplifies the Executive. It is possible to construct a variety of APIs without any conflicts

or duplications in the Executive. New APIs can be added easily.

• It improves reliability. Each executive services module runs on a separate process, with its

own partition of memory, protected from other modules. Furthermore, the clients cannot

directly access hardware or modify memory in which the Executive is stored. A single

server can fail without crashing or corrupting the rest of the operating system.

• It provides a uniform means for applications to communicate with the Executive via LPCs

without restricting flexibility. The message-passing process is hidden from the client

applications by function stubs, which are nonexecutable placeholders kept in dynamic link

libraries (DLLs). When an application makes an API call to an environment subsystem, the

stub in the client application packages the parameters for the call and sends them as a

message to a server subsystem that implements the call.

• It provides a suitable base for distributed computing. Typically, distributed computing

makes use of a client/server model, with remote procedure calls implemented using

distributed client and server modules and the exchange of messages between clients and

servers. With Windows, a local server can pass a message on to a remote server for

processing on behalf of local client applications. Clients need not know whether a request

is serviced locally or remotely. Indeed, whether a request is serviced locally or remotely

can change dynamically based on current load conditions and on dynamic configuration

changes.

-13-

Threads and SMP

Two important characteristics of Windows are its support for threads and for symmetric

multiprocessing (SMP), both of which were introduced in Section 2.4. [CUST93] lists the

following features of Windows that support threads and SMP:

• Operating system routines can run on any available processor, and different routines can

execute simultaneously on different processors.

• Windows supports the use of multiple threads of execution within a single process.

Multiple threads within the same process may execute on different processors

simultaneously.

• Server processes may use multiple threads to process requests from more than one client

simultaneously.

• Windows provides mechanisms for sharing data and resources between processes and

flexible interprocess communication capabilities.

Windows Objects

Windows draws heavily on the concepts of object-oriented design. This approach facilitates the

sharing of resources and data among processes and the protection of resources from unauthorized

access. Among the key object-oriented concepts used by Windows are the following:

• Encapsulation: An object consists of one or more items of data, called attributes, and one

or more procedures that may be performed on those data, called services. The only way to

access the data in an object is by invoking one of the object's services. Thus, the data in the

object can easily be protected from unauthorized use and from incorrect use (e.g., trying to

execute a nonexecutable piece of data).

-14-

• Object class and instance: An object class is a template that lists the attributes and

services of an object and defines certain object characteristics. The operating system can

create specific instances of an object class as needed. For example, there is a single process

object class and one process object for every currently active process. This approach

simplifies object creation and management.

• Inheritance: This is not supported at the user level but is supported to some extent within

the Executive. For example, Directory objects are examples of container objects. One

property of a container object is that the objects they contain can inherit properties from the

container itself. As an example, suppose you have a directory in the file system that has its

compressed flag set. Then any files you might create within that directory container will

also have their compressed flag set.

• Polymorphism: Internally, Windows uses a common set of API functions to manipulate

objects of any type; this is a feature of polymorphism, as defined in Appendix B. However,

Windows is not completely polymorphic because there are many APIs that are specific to

specific object types.

The reader unfamiliar with object-oriented concepts should review Appendix B at the end of this

book.

Not all entities in Windows are objects. Objects are used in cases where data are intended

for user mode access or when data access is shared or restricted. Among the entities represented

by objects are files, processes, threads, semaphores, timers, and windows. Windows creates and

manages all types of objects in a uniform way, via the object manager. The object manager is

responsible for creating and destroying objects on behalf of applications and for granting access

to an object's services and data.

Each object within the Executive, sometimes referred to as a kernel object (to distinguish

from user-level objects not of concern to the Executive), exists as a memory block allocated by

the kernel and is accessible only by the kernel. Some elements of the data structure (e.g., object

-15-

name, security parameters, usage count) are common to all object types, while other elements are

specific to a particular object type (e.g., a thread object's priority). These kernel object data

structures are accessible only by the kernel; it is impossible for an application to locate these data

structures and read or write them directly. Instead, applications manipulate objects indirectly

through the set of object manipulation functions supported by the Executive. When an object is

created, the application that requested the creation receives back a handle for the object. In

essence a handle is a pointer to the referenced object. This handle can then be used by any thread

within the same process to invoke Win32 functions that work with objects.

Objects may have security information associated with them, in the form of a Security

Descriptor (SD). This security information can be used to restrict access to the object. For

example, a process may create a named semaphore object with the intent that only certain users

should be able to open and use that semaphore. The SD for the semaphore object can list those

users that are allowed (or denied) access to the semaphore object along with the sort of access

permitted (read, write, change, etc.).

In Windows, objects may be either named or unnamed. When a process creates an

unnamed object, the object manager returns a handle to that object, and the handle is the only

way to refer to it. Named objects have a name that other processes can use to obtain a handle to

the object. For example, if process A wishes to synchronize with process B, it could create a

named event object and pass the name of the event to B. Process B could then open and use that

event object. However, if A simply wished to use the event to synchronize two threads within

itself, it would create an unnamed event object, because there is no need for other processes to be

able to use that event.

As an example of the objects managed by Windows, we list the two categories of objects

managed by the kernel;

• Control objects: Used to control the operation of the kernel in areas not affecting

dispatching and synchronization. Table 2.5 lists the kernel control objects.

-16-

• Dispatcher objects: Control the dispatching and synchronization of system operations.

These are described in Chapter 6.

Windows is not a full-blown object-oriented operating system. It is not implemented in an

object-oriented language. Data structures that reside completely within one Executive component

are not represented as objects. Nevertheless, Windows illustrates the power of object-oriented

technology and represents the increasing trend toward the use of this technology in operating

system design.

Table 2.5 Windows Microkernel Control Objects [MS96]

Asynchronous Procedure Call Used to break into the execution of a specified thread and to
cause a procedure to be called in a specified processor mode.

Interrupt Used to connect an interrupt source to an interrupt service
routine by means of an entry in an Interrupt Dispatch Table
(IDT). Each processor has an IDT that is used to dispatch
interrupts that occur on that processor.

Process Represents the virtual address space and control information
necessary for the execution of a set of thread objects. A process
contains a pointer to an address map, a list of ready threads
containing thread objects, a list of threads belonging to the
process, the total accumulated time for all threads executing
within the process, and a base priority.

Profile Used to measure the distribution of run time within a block of
code. Both user and system code can be profiled.

-17-

4.4 WINDOWS THREAD AND SMP MANAGEMENT

Windows process design is driven by the need to provide support for a variety of operating

system environments. Processes supported by different operating system environments differ in a

number of ways, including the following:

• How processes are named

• Whether threads are provided within processes

• How processes are represented

• How process resources are protected

• What mechanisms are used for interprocess communication and synchronization

• How processes are related to each other

Accordingly, the native process structures and services provided by the Windows kernel

are relatively simple and general purpose, allowing each operating system subsystem to emulate

a particular process structure and functionality. Important characteristics of Windows processes

are the following:

• Windows processes are implemented as objects.

• An executable process may contain one or more threads.

• Both process and thread objects have built-in synchronization capabilities.

Figure 4.12, based on one in [SOLO00], illustrates the way in which a process relates to the

resources it controls or uses. Each process is assigned a security access token, called the primary

token of the process. When a user first logs on, Windows creates an access token that includes a

security ID for the user. Every process that is created by or runs on behalf of this user has a copy

of this access token. Windows uses the token to validate the user's ability to access secured

Pr
oc

es
s

ob
je

ct

A
cc

es
s

to
ke

n

V
ir

tu
al

 a
dd

re
ss

 d
es

cr
ip

to
rs

Th
re

ad

x

Fi
le

y

Se
ct

io
n

z

• • •

H
an

dl
e1

H
an

dl
e2

H
an

dl
e3

A
va

ila
bl

e
ob

je
ct

s

Fi
gu

re
 4

.1
2

 A
 W

in
do

w
s P

ro
ce

ss
 a

nd
 It

s R
es

ou
rc

es

H
an

dl
e T

ab
le

-18-

objects or to perform restricted functions on the system and on secured objects. The access token

controls whether the process can change its own attributes. In this case, the process does not have

a handle opened to its access token. If the process attempts to open such a handle, the security

system determines whether this is permitted and therefore whether the process may change its

own attributes.

Also related to the process is a series of blocks that define the virtual address space

currently assigned to this process. The process cannot directly modify these structures but must

rely on the virtual memory manager, which provides a memory-allocation service for the

process.

Finally, the process includes an object table, with handles to other objects known to this

process. One handle exists for each thread contained in this object. Figure 4.12 shows a single

thread. In addition, the process has access to a file object and to a section object that defines a

section of shared memory.

Process and Thread Objects

The object-oriented structure of Windows facilitates the development of a general-purpose

process facility. Windows makes use of two types of process-related objects: processes and

threads. A process is an entity corresponding to a user job or application that owns resources,

such as memory, and opens files. A thread is a dispatchable unit of work that executes

sequentially and is interruptible, so that the processor can turn to another thread.

Each Windows process is represented by an object whose general structure is shown in

Figure 4.13a. Each process is defined by a number of attributes and encapsulates a number of

actions, or services, that it may perform. A process will perform a service upon receipt of the

appropriate message; the only way to invoke such a service is by means of messages to a process

object that provides that service. When Windows creates a new process, it uses the object class,

or type, defined for the Windows process as a template to generate a new object instance. At the

Pr
oc

es
s I

D
Se

cu
rit

y
D

es
cr

ip
to

r
Ba

se
 p

rio
rit

y
D

ef
au

lt
pr

oc
es

so
r a

ffi
ni

ty
Q

uo
ta

 li
m

its
Ex

ec
ut

io
n

tim
e

I/O
 c

ou
nt

er
s

V
M

 o
pe

ra
tio

n
co

un
te

rs
Ex

ce
pt

io
n/

de
bu

gg
in

g
po

rts
Ex

it
sta

tu
s

Cr
ea

te
 p

ro
ce

ss
O

pe
n

pr
oc

es
s

Q
ue

ry
 p

ro
ce

ss
 in

fo
rm

at
io

n
Se

t p
ro

ce
ss

 in
fo

rm
at

io
n

Cu
rre

nt
 p

ro
ce

ss
Te

rm
in

at
e

pr
oc

es
s

Pr
oc

es
s

O
bj

ec
t T

yp
e

O
bj

ec
t B

od
y

A
ttr

ib
ut

es

Se
rv

ic
es

Th
re

ad
 ID

Th
re

ad
 c

on
te

xt
D

yn
am

ic
 p

rio
rit

y
Ba

se
 p

rio
rit

y
Th

re
ad

 p
ro

ce
ss

or
 a

ffi
ni

ty
Th

re
ad

 e
xe

cu
tio

n
tim

e
A

le
rt

sta
tu

s
Su

sp
en

sio
n

co
un

t
Im

pe
rs

on
at

io
n

to
ke

n
Te

rm
in

at
io

n
po

rt
Th

re
ad

 e
xi

t s
ta

tu
s

Cr
ea

te
 th

re
ad

O
pe

n
th

re
ad

Q
ue

ry
 th

re
ad

 in
fo

rm
at

io
n

Se
t t

hr
ea

d
in

fo
rm

at
io

n
Cu

rre
nt

 th
re

ad
Te

rm
in

at
e

th
re

ad
G

et
 c

on
te

xt
Se

t c
on

te
xt

Su
sp

en
d

Re
su

m
e

A
le

rt
th

re
ad

Te
st

th
re

ad
 a

le
rt

Re
gi

ste
r t

er
m

in
at

io
n

po
rt

Th
re

ad
O

bj
ec

t T
yp

e

O
bj

ec
t B

od
y

A
ttr

ib
ut

es

Se
rv

ic
es

(a
) P

ro
ce

ss
 o

bj
ec

t

(b
) T

hr
ea

d
ob

je
ct

Fi
gu

re
 4

.1
3

 W
in

do
w

s P
ro

ce
ss

 a
nd

 T
hr

ea
d

O
bj

ec
ts

-19-

time of creation, attribute values are assigned. Table 4.3 gives a brief definition of each of the

object attributes for a process object.

A Windows process must contain at least one thread to execute. That thread may then

create other threads. In a multiprocessor system, multiple threads from the same process may

execute in parallel. Figure 4.13b depicts the object structure for a thread object, and Table 4.4

defines the thread object attributes. Note that some of the attributes of a thread resemble those of

a process. In those cases, the thread attribute value is derived from the process attribute value.

For example, the thread processor affinity is the set of processors in a multiprocessor system that

may execute this thread; this set is equal to or a subset of the process processor affinity.

Note that one of the attributes of a thread object is context. This information enables

threads to be suspended and resumed. Furthermore, it is possible to alter the behavior of a thread

by altering its context when it is suspended.

-20-

Table 4.3 Windows Process Object Attributes

Process ID A unique value that identifies the process to the operating system.

Security Descriptor Describes who created an object, who can gain access to or use the
object, and who is denied access to the object.

Base priority A baseline execution priority for the process's threads.

Default processor affinity The default set of processors on which the process's threads can
run.

Quota limits The maximum amount of paged and nonpaged system memory,
paging file space, and processor time a user's processes can use.

Execution time The total amount of time all threads in the process have executed.

I/O counters Variables that record the number and type of I/O operations that
the process's threads have performed.

VM operation counters Variables that record the number and types of virtual memory
operations that the process's threads have performed.

Exception/debugging ports Interprocess communication channels to which the process
manager sends a message when one of the process's threads causes
an exception.

Exit status The reason for a process's termination.

-21-

Table 4.4 Windows Thread Object Attributes

Thread ID A unique value that identifies a thread when it calls a server.

Thread context The set of register values and other volatile data that defines the
execution state of a thread.

Dynamic priority The thread's execution priority at any given moment.

Base priority The lower limit of the thread's dynamic priority.

Thread processor affinity The set of processors on which the thread can run, which is a
subset or all of the processor affinity of the thread's process.

Thread execution time The cumulative amount of time a thread has executed in user mode
and in kernel mode.

Alert status A flag that indicates whether the thread should execute an
asynchronous procedure call.

Suspension count The number of times the thread's execution has been suspended
without being resumed.

Impersonation token A temporary access token allowing a thread to perform operations
on behalf of another process (used by subsystems).

Termination port An interprocess communication channel to which the process
manager sends a message when the thread terminates (used by
subsystems).

Thread exit status The reason for a thread's termination.

-22-

Multithreading

Windows supports concurrency among processes because threads in different processes may

execute concurrently. Moreover, multiple threads within the same process may be allocated to

separate processors and execute simultaneously. A multithreaded process achieves concurrency

without the overhead of using multiple processes. Threads within the same process can exchange

information through their common address space and have access to the shared resources of the

process. Threads in different processes can exchange information through shared memory that

has been set up between the two processes.

An object-oriented multithreaded process is an efficient means of implementing a server

application. For example, one server process can service a number of clients. Each client request

triggers the creation of a new thread within the server.

Thread States

An existing Windows thread is in one of six states (Figure 4.14):

• Ready: May be scheduled for execution. The microkernel dispatcher keeps track of all

ready threads and schedules them in priority order.

• Standby: A standby thread has been selected to run next on a particular processor. The

thread waits in this state until that processor is made available. If the standby thread's

priority is high enough, the running thread on that processor may be preempted in favor of

the standby thread. Otherwise, the standby thread waits until the running thread blocks or

exhausts its time slice.

• Running: Once the microkernel performs a thread or process switch, the standby thread

enters the running state and begins execution and continues execution until it is preempted,

exhausts its time slice, blocks, or terminates. In the first two cases, it goes back to the ready

state.

Fi
gu

re
 4

.1
4

 W
in

do
w

s T
hr

ea
d

St
at

es

Tr
an

sit
io

n

R
ea

dy

W
ai

tin
g

R
un

na
bl

e

N
ot

 R
un

na
bl

e

St
an

db
y

Pi
ck

 to
R

un
Sw

itc
h

Pr
ee

m
pt

ed

Bl
oc

k/
Su

sp
en

d

U
nb

lo
ck

/R
es

um
e

R
es

ou
rc

e A
va

ila
bl

e
R

es
ou

rc
e

A
va

ila
bl

e

U
nb

lo
ck

R
es

ou
rc

e N
ot

 A
va

ila
bl

e

Te
rm

in
at

e

Te
rm

in
at

ed

R
un

ni
ng

-23-

• Waiting: A thread enters the waiting state when (1) it is blocked on an event (e.g., I/O), (2)

it voluntarily waits for synchronization purposes, or (3) an environment subsystem directs

the thread to suspend itself. When the waiting condition is satisfied, the thread moves to the

Ready state if all of its resources are available.

• Transition: A thread enters this state after waiting if it is ready to run but the resources are

not available. For example, the thread's stack may be paged out of memory. When the

resources are available, the thread goes to the Ready state.

• Terminated: A thread can be terminated by itself, by another thread, or when its parent

process terminates. Once housekeeping chores are completed, the thread is removed from

the system, or it may be retained by the executive1 for future reinitialization.

Support for OS Subsystems

The general-purpose process and thread facility must support the particular process and thread

structures of the various OS clients. It is the responsibility of each OS subsystem to exploit the

Windows process and thread features to emulate the process and thread facilities of its

corresponding operating system. This area of process/thread management is complicated, and we

give only a brief overview here.

Process creation begins with a request for a new process from an application. The

application issues a create-process request to the corresponding protected subsystem, which

passes the request to the Windows executive. The executive creates a process object and returns

a handle to that object to the subsystem. When Windows creates a process, it does not

automatically create a thread. In the case of Win32 and OS/2, a new process is always created

with a thread. Therefore, for these operating systems, the subsystem calls the Windows process

manager again to create a thread for the new process, receiving a thread handle back from

1 The Windows executive is described in Chapter 2. It contains the base operating system
services, such as memory management, process and thread management, security, I/O, and
interprocess communication.

-24-

Windows. The appropriate thread and process information are then returned to the application. In

the case of 16-bit Windows and POSIX, threads are not supported. Therefore, for these operating

systems, the subsystem obtains a thread for the new process from Windows so that the process

may be activated but returns only process information to the application. The fact that the

application process is implemented using a thread is not visible to the application.

When a new process is created in Win32 or OS/2, the new process inherits many of its

attributes from the creating process. However, in the Windows environment, this process

creation is done indirectly. An application client process issues its process creation request to the

OS subsystem; then a process in the subsystem in turn issues a process request to the Windows

executive. Because the desired effect is that the new process inherits characteristics of the client

process and not of the server process, Windows enables the subsystem to specify the parent of

the new process. The new process then inherits the parent's access token, quota limits, base

priority, and default processor affinity.

Symmetric Multiprocessing Support

Windows supports an SMP hardware configuration. The threads of any process, including those

of the executive, can run on any processor. In the absence of affinity restrictions, explained in the

next paragraph, the microkernel assigns a ready thread to the next available processor. This

assures that no processor is idle or is executing a lower-priority thread when a higher-priority

thread is ready. Multiple threads from the same process can be executing simultaneously on

multiple processors.

As a default, the microkernel uses the policy of soft affinity in assigning threads to

processors: the dispatcher tries to assign a ready thread to the same processor it last ran on. This

helps reuse data still in that processor's memory caches from the previous execution of the

thread. It is possible for an application to restrict its thread execution to certain processors (hard

affinity).

-25-

6.10 WINDOWS CONCURRENCY MECHANISMS

Windows XP and 2003 provide synchronization among threads as part of the object architecture.

The two most important methods of synchronization are synchronization objects and critical

section objects. Synchronization objects make use of wait functions. We first describe wait

functions and then look at the two object types.

Wait Functions

The wait functions allow a thread to block its own execution. The wait functions do not return

until the specified criteria have been met. The type of wait function determines the set of criteria

used. When a wait function is called, it checks whether the wait criteria have been met. If the

criteria have not been met, the calling thread enters the wait state. It uses no processor time while

waiting for the criteria to be met.

The most straightforward type of wait function is one that waits on a single object. The

WaitForSingleObject function requires a handle to one synchronization object. The

function returns when one of the following occurs:

• The specified object is in the signaled state.

• The time-out interval elapses. The time-out interval can be set to INFINITE to specify

that the wait will not time out.

Synchronization Objects

The mechanism used by the Windows executive to implement synchronization facilities is the

family of synchronization objects, which are listed with brief descriptions in Table 6.7.

The first four object types in the table are specifically designed to support synchronization.

The remaining object types have other uses but also may be used for synchronization.

-26-

Each synchronization object instance can be in either a signaled or unsignaled state. A

thread can be blocked on an object in an unsignaled state; the thread is released when the object

enters the signaled state. The mechanism is straightforward: a thread issues a wait request to the

Windows executive, using the handle of the synchronization object. When an object enters the

signaled state, the Windows executive releases all thread objects that are waiting on that

synchronization object.

The event object is useful in sending a signal to a thread indicating that a particular event

has occurred. For example, in overlapped input and output, the system sets a specified event

object to the signaled state when the overlapped operation has been completed. The mutex

object is used to enforce mutually exclusive access to a resource, allowing only one thread

object at a time to gain access. It therefore functions as a binary semaphore. When the mutex

object enters the signaled state, only one of the threads waiting on the mutex is released. Mutexes

can be used to synchronize threads running in different processes. Like mutexes, semaphore

objects may be shared by threads in multiple processes. The Windows semaphore is a counting

semaphore. In essence, the waitable timer object signals at a certain time and/or at regular

intervals.

Critical Section Objects

Critical section objects provide a synchronization mechanism similar to that provided by mutex

objects, except that critical section objects can be used only by the threads of a single process.

Event, mutex, and semaphore objects can also be used in a single-process application, but critical

section objects provide a slightly faster, more efficient mechanism for mutual-exclusion

synchronization.

The process is responsible for allocating the memory used by a critical section. Typically,

this is done by simply declaring a variable of type CRITICAL_SECTION. Before the threads of

the process can use it, initialize the critical section by using the

-27-

InitializeCriticalSection or InitializeCriticalSectionAndSpinCount

function.

A thread uses the EnterCriticalSection or TryEnterCriticalSection

function to request ownership of a critical section. It uses the LeaveCriticalSection

function to release ownership of a critical section. If the critical section object is currently owned

by another thread, EnterCriticalSection waits indefinitely for ownership. In contrast,

when a mutex object is used for mutual exclusion, the wait functions accept a specified time-out

interval. The TryEnterCriticalSection function attempts to enter a critical section

without blocking the calling thread.

-28-

Table 6.7 Windows Synchronization Objects

Object Type Definition
Set to Signaled State
When

Effect on Waiting
Threads

Event
An announcement that a
system event has occurred

Thread sets the event All released

Mutex

A mechanism that
provides mutual exclusion
capabilities; equivalent to
a binary semaphore

Owning thread or other
thread releases the mutex

One thread
released

Semaphore
A counter that regulates
the number of threads that
can use a resource

Semaphore count drops to
zero

All released

Waitable timer
A counter that records the
passage of time

Set time arrives or time
interval expires

All released

File change
notification

A notification of any file
system changes.

Change occurs in file
system that matches filter
criteria of this object

One thread
released

Console input

A text window screen
buffer (e.g., used to handle
screen I/O for an MS-DOS
application)

Input is available for
processing

One thread
released

Job
An instance of an opened
file or I/O device

I/O operation completes All released

Memory resource
notification

A notification of change to
a memory resource

Specified type of change
occurs within physical
memory

All released

Process

A program invocation,
including the address
space and resources
required to run the
program

Last thread terminates All released

Thread
An executable entity
within a process

Thread terminates All released

Note: Colored rows correspond to objects that exist for the sole purpose of synchronization.

-29-

8.5 WINDOWS MEMORY MANAGEMENT

The Windows virtual memory manager controls how memory is allocated and how paging is

performed. The memory manager is designed to operate over a variety of platforms and use page

sizes ranging from 4 Kbytes to 64 Kbytes. Intel, PowerPC, and MIPS platforms have 4096 bytes

per page and DEC Alpha platforms have 8192 bytes per page.

Windows Virtual Address Map

Each Windows user process sees a separate 32-bit address space, allowing 4 Gbytes of memory

per process. By default, a portion of this memory is reserved for the operating system, so each

user actually has 2 Gbyte of available virtual address space and all processes share the same 2

Gbytes of system space. There an option that allows user space to be increased to 3 Gbytes,

leaving 1 Gbyte for system space. The Windows documentation indicates that this feature is

intended to support large memory intensive applications on servers with multiple gigabytes of

RAM, and that the use of the larger address space can dramatically improve performance for

applications such as decision support or data mining.

Figure 8.26 shows the default virtual address space seen by a user process. It consists of

four regions:

• 0x00000000 to 0x0000FFFF: Set aside to help programmers catch NULL-pointer

assignments.

• 0x00010000 to 0x7FFEFFFF: Available user address space. This space is divided into

pages that may be loaded into main memory.

• 0x7FFF0000 to 0x7FFFFFFF: A guard page inaccessible to the user. This page makes it

easier for the operating system to check on out-of-bounds pointer references.

• 0x80000000 to 0xFFFFFFFF: System address space. This 2-Gbyte process is used for the

Windows Executive, microkernel, and device drivers.

0

0xFFFFFFFF

64-Kbyte region for
NULL-pointer assignments
(inaccessible)

64-Kbyte region for
bad pointer assignments
(inaccessible)

2-Gbyte region for
the operating system
(inacessible)

2-Gbyte user
address space
(unreserved, usable)

Figure 8.26 Windows Default Virtual Address Space

-30-

Windows Paging

When a process is created, it can in principle make use of the entire user space of 2 Gbytes

(minus 128 Kbytes). This space is divided into fixed-size pages, any of which can be brought

into main memory. In practice, to simplify the accounting, a page can be in one of three states:

• Available: Pages not currently used by this process.

• Reserved: A set of contiguous pages that the virtual memory manager sets aside for a

process but does not count against the process's memory quota until used. When a process

needs to write to memory, some of the reserved memory is committed to the process.

• Committed: Pages for which the virtual memory manager has set aside space in its paging

file (e.g., the disk file to which it writes pages when removing them from main memory).

The distinction between reserved and committed memory is useful because it (1) minimizes

the amount of disk space set aside for a particular process, keeping that disk space free for other

processes; and (2) enables a thread or process to declare an amount of memory that can be

quickly allocated as needed.

The resident set management scheme used by Windows is variable allocation, local scope

(see Table 8.4). When a process is first activated, it is assigned a certain number of page frames

of main memory as its working set. When a process references a page not in memory, one of the

resident pages of that process is swapped out and the new page is brought in. Working sets of

active processes are adjusted using the following general conventions:

• When main memory is plentiful, the virtual memory manager allows the resident sets of

active processes to grow. To do this, when a page fault occurs, a new page is brought into

memory but no older page is swapped out, resulting in an increase of the resident set of that

process by one page.

-31-

• When memory becomes scarce, the virtual memory manager recovers memory for the

system by moving less recently used pages out of the working sets of active processes,

reducing the size of those resident sets.

-32-

10.5 WINDOWS SCHEDULING

Windows is designed to be as responsive as possible to the needs of a single user in a highly

interactive environment or in the role of a server. Windows implements a preemptive scheduler

with a flexible system of priority levels that includes round-robin scheduling within each level

and, for some levels, dynamic priority variation on the basis of their current thread activity.

Process and Thread Priorities

Priorities in Windows are organized into two bands, or classes: real time and variable. Each of

these bands consists of 16 priority levels. Threads requiring immediate attention are in the real-

time class, which includes functions such as communications and real-time tasks.

Overall, because Windows makes use of a priority-driven preemptive scheduler, threads

with real-time priorities have precedence over other threads. On a uniprocessor, when a thread

becomes ready whose priority is higher than the currently executing thread, the lower-priority

thread is preempted and the processor given to the higher-priority thread.

Priorities are handled somewhat differently in the two classes (Figure 10.14). In the real-

time priority class, all threads have a fixed priority that never changes. All of the active threads

at a given priority level are in a round-robin queue. In the variable priority class, a thread's

priority begins at some initial assigned value and then may change, up or down, during the

thread's lifetime. Thus, there is a FIFO queue at each priority level, but a process may migrate to

one of the other queues within the variable priority class. However, a thread at priority level 15

cannot be promoted to level 16 or any other level in the real-time class.

The initial priority of a thread in the variable priority class is determined by two quantities:

process base priority and thread base priority. One of the attributes of a process object is process

base priority, which can take on any value from 0 through 15. Each thread object associated with

a process object has a thread base priority attribute that indicates the thread's base priority

relative to that of the process. The thread's base priority can be equal to that of its process or

Highest (31)

Lowest (16)

Highest (15)

Lowest (0)

Real-time
Priority
Classes

Variable
Priority
Classes

Figure 10.14 Windows Thread Dispatching Priorities

-33-

within two levels above or below that of the process. So, for example, if a process has a base

priority of 4 and one of its threads has a base priority of –1, then the initial priority of that thread

is 3.

Once a thread in the variable priority class has been activated, its actual priority, referred to

as the thread's dynamic priority, may fluctuate within given boundaries. The dynamic priority

may never fall below the lower range of the thread's base priority and it may never exceed 15.

Figure 10.15 gives an example. The process object has a base priority attribute of 4. Each thread

object associated with this process object must have an initial priority of between 2 and 6. The

dynamic priority for each thread may fluctuate in the range from 2 through 15. If a thread is

interrupted because it has used up its current time quantum, the Windows executive lowers its

priority. If a thread is interrupted to wait on an I/O event, the Windows executive raises its

priority. Thus, processor-bound threads tend toward lower priorities and I/O-bound threads tend

toward higher priorities. In the case of I/O-bound threads, the executive raises the priority more

for interactive waits (e.g., wait on keyboard or display) than for other types of I/O (e.g., disk

I/O). Thus, interactive threads tend to have the highest priorities within the variable priority

class.

Multiprocessor Scheduling

When Windows is run on a single processor, the highest-priority thread is always active unless it

is waiting on an event. If there is more than one thread that has the highest priority, then the

processor is shared, round robin, among all the threads at that priority level. In a multiprocessor

system with N processors, the (N – 1) highest priority threads are always active, running

exclusively on the (N – 1) extra processors. The remaining, lower-priority, threads share the

single remaining processor. For example, if there are three processors, the two highest-priority

threads run on two processors, while all remaining threads run on the remaining processor.

base priority normal
below normal

lowest

above normal
highest

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

Process
Priority

Thread's Base
Priority

Thread's Dynamic
Priority

Figure 10.15 Example of Windows Priority Relationship

-34-

The foregoing discipline is affected by the processor affinity attribute of a thread. If a

thread is ready to execute but the only available processors are not in its processor affinity set,

then that thread is forced to wait, and the executive schedules the next available thread.

-35-

11.10 WINDOWS I/O

Figure 11.15 shows the Windows I/O manager. The I/O manager is responsible for all I/O for the

operating system and provides a uniform interface that all types of drivers can call.

Basic I/O Modules

The I/O manager consists of four modules:

• Cache manager: The cache manager handles caching for the entire I/O subsystem. The

cache manager provides a caching service in main memory to all file systems and network

components. It can dynamically increase and decrease the size of the cache devoted to a

particular activity as the amount of available physical memory varies. Cache manager

includes two services to improve overall performance:

—Lazy write: The system records updates in the cache only and not on disk. Later, when

demand on the processor is low, the cache manager writes the changes to disk. If a

particular cache block is updated in the meantime, there is a net savings.

—Lazy commit: This is similar to lazy write for transaction processing. Instead of

immediately marking a transaction as successfully completed, the system caches the

committed information and later writes it to the file system log by a background process.

• File system drivers: The I/O manager treats a file system driver as just another device

driver and routes message for certain volumes to the appropriate software driver for that

device adapter.

• Network drivers: Windows includes integrated networking capabilities and support for

distributed applications.

• Hardware device drivers: These drivers access the hardware registers of the peripheral

devices through entry points in Windows Executive dynamic link libraries. A set of these

routines exists for every platform that Windows supports; because the routine names are

I/O Manager
Cache

Manager
File System

Drivers
Network
Drivers

Hardware
Device Drivers

Figure 11.15 Windows I/O Manager

-36-

the same for all platforms, the source code of Windows device drivers is portable across

different processor types.

Asynchronous and Synchronous I/O

Windows offers two modes of I/O operation: asynchronous and synchronous. The asynchronous

mode is used whenever possible to optimize application performance. With asynchronous I/O, an

application initiates an I/O operation and then can continue processing while the I/O request is

fulfilled. With synchronous I/O, the application is blocked until the I/O operation completes.

Asynchronous I/O is more efficient, from the point of view of the calling thread, because it

allows the thread to continue execution while the I/O operation is queued by the I/O manager and

subsequently performed. However, the application that invoked the asynchronous I/O operation

needs some way to determine when the operation is complete. Windows provides four different

techniques for signaling I/O completion:

• Signaling a device kernel object: With this approach, an indicator associated with a

device object is set when an operation on that object is complete. The thread that invoked

the I/O operation can continue to execute until it reaches a point where it must stop until

the I/O operation is complete. At that point, the thread can wait until the operation is

complete and then continue. This technique is simple and easy to use but is not appropriate

for handling multiple I/O requests. For example, if a thread needs to perform multiple

simultaneous actions on a single file, such as reading from one portion and writing to

another portion of the file, with this technique, the thread could not distinguish between the

completion of the read and the completion of the write. It would simply know that some

requested I/O operation on this file was complete.

• Signaling an event kernel object: This technique allows multiple simultaneous I/O

requests against a single device or file. The thread creates an event for each request. Later,

the thread can wait on a single one of these requests or on the entire collection of requests.

-37-

• Alertable I/O: This technique makes use of a queue associated with a thread, known as the

asynchronous procedure call (APC) queue. In this case, the thread makes I/O requests, and

the I/O manager places the results of these requests in the calling thread's APC queue.

• I/O completion ports: This technique is used on a Windows server to optimize the use of

threads. In essence, a pool of threads is available for use so that it is not necessary to create

a new thread to handle a new request.

Software RAID

Windows supports two sorts of RAID configurations, defined in [MS96] as follows:

• Hardware RAID: Separate physical disks combined into one or more logical disks by the

disk controller or disk storage cabinet hardware.

• Software RAID: Noncontiguous disk space combined into one or more logical partitions

by the fault-tolerant software disk driver, FTDISK.

In hardware RAID, the controller interface handles the creation and regeneration of

redundant information. The software RAID, available on Windows Server, implements the

RAID functionality as part of the operating system and can be used with any set of multiple

disks. The software RAID facility implements RAID 1 and RAID 5. In the case of RAID 1 (disk

mirroring), the two disks containing the primary and mirrored partitions may be on the same disk

controller or different disk controllers. The latter configuration is referred to as disk duplexing.

-38-

12.9 WINDOWS FILE SYSTEM

Windows supports a number of file systems, including the file allocation table (FAT) that runs

on Windows 95, MS-DOS, and OS/2. But the developers of Windows also designed a new file

system, the Windows File System (NTFS), that is intended to meet high-end requirements for

workstations and servers. Examples of high-end applications:

• Client/server applications such as file servers, compute servers, and database servers

• Resource-intensive engineering and scientific applications

• Network applications for large corporate systems

This section provides an overview of NTFS.

Key Features of NTFS

NTFS is a flexible and powerful file system built, as which shall see, on an elegantly simple file

system model. The most noteworthy features of NTFS include:

• Recoverability: High on the list of requirements for the new Windows file system was the

ability to recover from system crashes and disk failures. In the event of such failures, NTFS

is able to reconstruct disk volumes and return them to a consistent state. It does this by

using a transaction processing model for changes to the file system; each significant change

is treated as an atomic action that is either entirely performed or not performed at all. Each

transaction that was in process at the time of a failure is subsequently backed out or

brought to completion. In addition, NTFS uses redundant storage for critical file system

data, so that failure of a disk sector does not cause the loss of data describing the structure

and status of the file system.

-39-

• Security: NTFS uses the Windows object model to enforce security. An open file is

implemented as a file object with a security descriptor that defines its security attributes.

• Large disks and large files: NTFS supports very large disks and very large files more

efficiently than most other file systems, including FAT.

• Multiple data streams: The actual contents of a file are treated as a stream of bytes. In

NTFS it is possible to define multiple data streams for a single file. An example of the

utility of this feature is that it allows Windows to be used by remote Macintosh systems to

store and retrieve files. On Macintosh, each file has two components: the file data and a

resource fork that contains information about the file. NTFS treats these two components as

two data streams.

• General indexing facility: NTFS associates a collection of attributes with each file. The

set of file descriptions in the file management system is organized as a relational database,

so that files can be indexed by any attribute.

NTFS Volume and File Structure

NTFS makes use of the following disk storage concepts:

• Sector: The smallest physical storage unit on the disk. The data size in bytes is a power of

2 and is almost always 512 bytes.

• Cluster: One or more contiguous (next to each other on the same track) sectors. The cluster

size in sectors is a power of 2.

• Volume: A logical partition on a disk, consisting of one or more clusters and used by a file

system to allocate space. At any time, a volume consists of a file system information, a

collection of files, and any additional unallocated space remaining on the volume that can

be allocated to files. A volume can be all or a portion of a single disk or it can extend

across multiple disks. If hardware or software RAID 5 is employed, a volume consists of

stripes spanning multiple disks. The maximum volume size for NTFS is 264 bytes.

-40-

The cluster is the fundamental unit of allocation in NTFS, which does not recognize

sectors. For example, suppose each sector is 512 bytes and the system is configured with two

sectors per cluster (one cluster = 1K bytes). If a user creates a file of 1600 bytes, two clusters are

allocated to the file. Later, if the user updates the file to 3200 bytes, another two clusters are

allocated. The clusters allocated to a file need not be contiguous; it is permissible to fragment a

file on the disk. Currently, the maximum file size supported by NTFS is 232 clusters, which is

equivalent to a maximum of 248 bytes. A cluster can have at most 216 bytes.

The use of clusters for allocation makes NTFS independent of physical sector size. This

enables NTFS to support easily nonstandard disks that do not have a 512-byte sector size and to

support efficiently very large disks and very large files by using a larger cluster size. The

efficiency comes from the fact that the file system must keep track of each cluster allocated to

each file; with larger clusters, there are fewer items to manage.

Table 12.6 shows the default cluster sizes for NTFS. The defaults depend on the size of the

volume. The cluster size that is used for a particular volume is established by NTFS when the

user requests that a volume be formatted.

Table 12.6 Windows NTFS Partition and Cluster Sizes

Volume Size Sectors per Cluster Cluster Size

! 512 Mbyte 1 512 bytes

512 Mbyte - 1 Gbyte 2 1K

1 Gbyte - 2 Gbyte 4 2K

2 Gbyte - 4 Gbyte 8 4K

4 Gbyte - 8 Gbyte 16 8K

8 Gbyte - 16 Gbyte 32 16K

16 Gbyte - 32 Gbyte 64 32K

> 32 Gbyte 128 64K

-41-

NTFS Volume Layout

NTFS uses a remarkably simple but powerful approach to organizing information on a disk

volume. Every element on a volume is a file, and every file consists of a collection of attributes.

Even the data contents of a file is treated as an attribute. With this simple structure, a few

general-purpose functions suffice to organize and manage a file system.

Figure 12.17 shows the layout of an NTFS volume, which consists of four regions. The first

few sectors on any volume are occupied by the partition boot sector (although it is called a

sector, it can be up to 16 sectors long), which contains information about the volume layout and

the file system structures as well as boot startup information and code. This is followed by the

master file table (MFT), which contains information about all of the files and folders

(directories) on this NTFS volume as well as information about available unallocated space. In

essence, the MFT is a list of all contents on this NTFS volume, organized as a set of rows in a

relational database structure.

Following the MFT is a region, typically about 1 Mbyte in length, containing system files.

Among the files in this region are the following:

• MFT2: A mirror of the first three rows of the MFT, used to guarantee access to the MFT in

the case of a single-sector failure

• Log file: A list of transaction steps used for NTFS recoverability

• Cluster bit map: A representation of the volume, showing which clusters are in use

• Attribute definition table: Defines the attribute types supported on this volume and

indicates whether they can be indexed and whether they can be recovered during a system

recovery operation

Master File Table

The heart of the Windows file system is the MFT. The MFT is organized as a table of

variable-length rows, called records. Each row describes a file or a folder on this volume,

pa
rt

iti
on

bo
ot

se
ct

or
M

as
te

r F
ile

 T
ab

le
Fi

le
 A

re
a

Fi
gu

re
 1

2.
17

 N
TF

S
Vo

lu
m

e L
ay

ou
t

Sy
st

em
Fi

le
s

-42-

including the MFT itself, which is treated as a file. If the contents of a file are small enough, then

the entire file is located in a row of the MFT. Otherwise, the row for that file contains partial

information and the remainder of the file spills over into other available clusters on the volume,

with pointers to those clusters in the MFT row of that file.

Each record in the MFT consists of a set of attributes that serve to define the file (or folder)

characteristics and the file contents. Table 12.7 lists the attributes that may be found in a row,

with the required attributes indicated by shading.

Table 12.7 Windows NTFS File and Directory Attribute Types

Attribute Type Description

Standard information Includes access attributes (read-only, read/write, etc.); time
stamps, including when the file was created or last modified;
and how many directories point to the file (link count).

Attribute list A list of attributes that make up the file and the file reference
of the MFT file record in which each attribute is located. Used
when all attributes do not fit into a single MFT file record.

File name A file or directory must have one or more names.

Security descriptor Specifies who owns the file and who can access it.

Data The contents of the file. A file has one default unnamed data
attribute and may have one or more named data attributes.

Index root Used to implement folders.

Index allocation Used to implement folders.

Volume information Includes volume-related information, such as the version and
name of the volume.

Bitmap Provides a map representing records in use on the MFT or
folder.

Note: colored rows refer to required file attributes; the other attributes are optional.

-43-

Recoverability

NTFS makes it possible to recover the file system to a consistent state following a system crash

or disk failure. The key elements that support recoverability are (Figure 12.18):

• I/O manager: Includes the NTFS driver, which handles the basic open, close, read, write

functions of NTFS. In addition, the software RAID module FTDISK can be configured for

use.

• Log file service: Maintains a log of disk writes. The log file is used to recover an NTFS-

formatted volume in the case of a system failure.

• Cache manager: Responsible for caching file reads and writes to enhance performance.

The cache manager optimizes disk I/O by using the lazy write and lazy commit techniques

described in Section 11.8.

• Virtual memory manager: The NTFS accesses cached files by mapping file references to

virtual memory references and reading and writing virtual memory.

It is important to note that the recovery procedures used by NTFS are designed to recover

file system data, not file contents. Thus, the user should never lose a volume or the directory/file

structure of an application because of a crash. However, user data are not guaranteed by the file

system. Providing full recoverability, including user data, would make for a much more elaborate

and resource-consuming recovery facility.

The essence of the NTFS recovery capability is logging. Each operation that alters a file

system is treated as a transaction. Each suboperation of a transaction that alters important file

system data structures is recorded in a log file before being recorded on the disk volume. Using

the log, a partially completed transaction at the time of a crash can later be redone or undone

when the system recovers.

In general terms, these are the steps taken to ensure recoverability, as described in

[CUST94]:

Log File
Service

NTFS Driver

I/O Manager

Fault Tolerant
Driver

Disk Driver

Cache
Manager

Virtual Memory
Manager

Flush the
log file

Write the
cache

Log the transaction
Read/write a
mirrored or

striped volume

Read/write
the disk

Figure 12.18 Windows NTFS Components

Read/write
the file

Load data from
disk into
memory

Access the mapped
file or flush the cache

-44-

1. NTFS first calls the log file system to record in the log file in the cache any transactions

that will modify the volume structure.

2. NTFS modifies the volume (in the cache).

3. The cache manager calls the log file system to prompt it to flush the log file to disk.

4. Once the log file updates are safely on disk, the cache manager flushes the volume

changes to disk.

-45-

14.5 WINDOWS CLUSTER SERVER

Windows Cluster Server (formerly code named Wolfpack) is a shared-nothing cluster, in which

each disk volume and other resources are owned by a single system at a time.

The Windows Cluster Server design makes use of the following concepts:

• Cluster Service: The collection of software on each node that manages all cluster-specific

activity.

• Resource: An item managed by the cluster service. All resources are objects representing

actual resources in the system, including hardware devices such as disk drives and network

cards and logical items such as logical disk volumes, TCP/IP addresses, entire applications,

and databases.

• Online: A resource is said to be online at a node when it is providing service on that

specific node.

• Group: A collection of resources managed as a single unit. Usually, a group contains all of

the elements needed to run a specific application and for client systems to connect to the

service provided by that application.

The concept of group is of particular importance. A group combines resources into larger

units that are easily managed, both for failover and load balancing. Operations performed on a

group, such as transferring the group to another node, automatically affect all of the resources in

that group. Resources are implemented as dynamically linked libraries (DLLs) and managed by a

resource monitor. The resource monitor interacts with the cluster service via remote procedure

calls and responds to cluster service commands to configure and move resource groups.

Figure 14.15 depicts the Windows Cluster Server components and their relationships in a

single system of a cluster. The node manager is responsible for maintaining this node's

membership in the cluster. Periodically, it sends heartbeat messages to the node managers on

C
lu

st
er

 M
an

ag
em

en
t T

oo
ls

C
lu

st
er

 A
PI

 D
LL

Ev
en

t P
ro

ce
ss

or

R
PC

R
es

ou
rc

e M
on

ito
rs

C
om

m
un

ic
at

io
n

M
an

ag
er

R
es

ou
rc

e M
gr

Fa
ilo

ve
r M

gr
A

pp
R

es
ou

rc
e

D
LL

Ph
ys

ic
al

R
es

ou
rc

e
D

LL

Lo
gi

ca
l

R
es

ou
rc

e
D

LL

Fi
gu

re
 1

4.
15

 W
in

do
w

s C
lu

st
er

 S
er

ve
r B

lo
ck

 D
ia

gr
am

 [S
H

O
R

97
]

A
pp

R
es

ou
rc

e
D

LL

N
od

e
M

an
ag

er

Cl
us
te
r

Se
rv
ic
e

Re
so
ur
ce

M
an
ag
em
en
t

In
te
rf
ac
e

O
th

er
N

od
es

N
on

-a
w

ar
e

A
pp

C
lu

st
er

-a
w

ar
e

A
pp

D
at

ab
as

e
M

an
ag

er

G
lo

ba
l U

pd
at

e
M

an
ag

er

-46-

other nodes in the cluster. In the event that one node manager detects a loss of heartbeat

messages from another cluster node, it broadcasts a message to the entire cluster, causing all

members to exchange messages to verify their view of current cluster membership. If a node

manager does not respond, it is removed from the cluster and its active groups are transferred to

one or more other active nodes in the cluster.

The configuration database manager maintains the cluster configuration database. The

database contains information about resources and groups and node ownership of groups. The

database managers on each of the cluster nodes cooperate to maintain a consistent picture of

configuration information. Fault-tolerant transaction software is used to assure that changes in

the overall cluster configuration are performed consistently and correctly.

The resource manager/failover manager makes all decisions regarding resource groups

and initiates appropriate actions such as startup, reset, and failover. When failover is required,

the failover managers on the active node cooperate to negotiate a distribution of resource groups

from the failed system to the remaining active systems. When a system restarts after a failure, the

failover manager can decide to move some groups back to this system. In particular, any group

may be configured with a preferred owner. If that owner fails and then restarts, the group is

moved back to the node in a rollback operation.

The event processor connects all of the components of the cluster service, handles

common operations, and controls cluster service initialization. The communications manager

manages message exchange with all other nodes of the cluster. The global update manager

provides a service used by other components within the cluster service.

-47-

16.6 WINDOWS SECURITY

A good example of the access control concepts we have been discussing is the Windows access

control facility, which exploits object-oriented concepts to provide a powerful and flexible

access control capability.

Windows provides a uniform access control facility that applies to processes, threads, files,

semaphores, windows, and other objects. Access control is governed by two entities: an access

token associated with each process and a security descriptor associated with each object for

which interprocess access is possible.

Access Control Scheme

When a user logs on to an Windows system, Windows uses a name/password scheme to

authenticate the user. If the logon is accepted, a process is created for the user and an access

token is associated with that process object. The access token, whose details are described later,

include a security ID (SID), which is the identifier by which this user is known to the system for

purposes of security. When any additional processes are spawned by the initial user process, the

new process object inherits the same access token.

The access token serves two purposes:

1. It keeps all necessary security information together to speed access validation. When any

process associated with a user attempts access, the security subsystem can make use of

the token associated with that process to determine the user's access privileges.

2. It allows each process to modify its security characteristics in limited ways without

affecting other processes running on behalf of the user.

The chief significance of the second point has to do with privileges that may be associated

with a user. The access token indicates which privileges a user may have. Generally, the token is

-48-

initialized with each of these privileges in a disabled state. Subsequently, if one of the user's

processes needs to perform a privileged operation, the process may enable the appropriate

privilege and attempt access. It would be undesirable to keep all of the security information for a

user in one systemwide place, because in that case enabling a privilege for one process enables it

for all of them.

Associated with each object for which interprocess access is possible is a security

descriptor. The chief component of the security descriptor is an access control list that specifies

access rights for various users and user groups for this object. When a process attempts to access

this object , the SID of the process is matched against the access control list of the object to

determine if access will be allowed.

When an application opens a reference to a securable object, Windows verifies that the

object's security descriptor grants the application's user access. If the check succeeds, Windows

caches the resulting granted access rights.

An important aspect of Windows security is the concept of impersonation, which simplifies

the use of security in a client/server environment. If client and server talk through a RPC

connection, the server can temporarily assume the identity of the client so that it can evaluate a

request for access relative to that client's rights. After the access, the server reverts to its own

identity.

Access Token

Figure 16.12a shows the general structure of an access token, which includes the following

parameters:

• Security ID: Identifies a user uniquely across all of the machines on the network. This

generally corresponds to a user's logon name.

• Group SIDs: A list of the groups to which this user belongs. A group is simply a set of

user IDs that are identified as a group for purposes of access control. Each group has a

ACL HeaderSecurity ID (SID)

Group SIDS

Privileges

Default Owner

Default ACL

ACE Header

Flags

Owner

System Access
Control List

Discretionary
Access

Control List

Access Mask

SID

ACE Header

Access Mask

SID

(c) Access control list(b) Security descriptor

Figure 16.12 Windows Security Structures

(a) Access token

•
•
•

-49-

unique group SID. Access to an object can be defined on the basis of group SIDs,

individual SIDs, or a combination.

• Privileges: A list of security-sensitive system services that this user may call. An example

is create token. Another example is the set backup privilege; users with this privilege are

allowed to use a backup tool to back up files that they normally would not be able to read.

Most users will have no privileges.

• Default owner: If this process creates another object, this field specifies who is the owner

of the new object. Generally, the owner of the new process is the same as the owner of the

spawning process. However, a user may specify that the default owner of any processes

spawned by this process is a group SID to which this user belongs.

• Default ACL: This is an initial list of protections applied to the objects that the user

creates. The user may subsequently alter the ACL for any object that it owns or that one of

its groups owns.

Security Descriptors

Figure 16.12b shows the general structure of a security descriptor, which includes the following

parameters:

• Flags: Defines the type and contents of a security descriptor. The flags indicate whether or

not the SACL and DACL are present, whether or not they were placed on the object by a

defaulting mechanism, and whether the pointers in the descriptor use absolute or relative

addressing. Relative descriptors are required for objects that are transmitted over a

network, such as information transmitted in a RPC.

• Owner: The owner of the object can generally perform any action on the security

descriptor. The owner can be an individual or a group SID. The owner has the authority to

change the contents of the DACL.

-50-

• System Access Control List (SACL): Specifies what kinds of operations on the object

should generate audit messages. An application must have the corresponding privilege in

its access token to read or write the SACL of any object. This is to prevent unauthorized

applications from reading SACLs (thereby learning what not to do to avoid generating

audits) or writing them (to generate many audits to cause an illicit operation to go

unnoticed).

• Discretionary Access Control List (DACL): Determines which users and groups can

access this object for which operations. It consists of a list of access control entries (ACEs).

When an object is created, the creating process can assign as owner its own SID or any

group SID in its access token. The creating process cannot assign an owner that is not in the

current access token. Subsequently, any process that has been granted the right to change the

owner of an object may do so, but again with the same restriction. The reason for the restriction

is to prevent a user from covering his tracks after attempting some unauthorized action.

Let us look in more detail at the structure of access control lists, because these are at the

heart of the Windows access control facility (Figure 16.12c). Each list consists of an overall

header and a variable number of access control entries. Each entry specifies an individual or

group SID and an access mask that defines the rights to be granted to this SID. When a process

attempts to access an object, the object manager in the Windows executive reads the SID and

group SIDs from the access token and then scans down the object's DACL. If a match is found,

that is if an ACE is found with a SID that matches one of the SIDs from the access token, then

the process has the access rights specified by the access mask in that ACE.

Figure 16.13 shows the contents of the access mask. The least significant 16 bits specify

access rights that apply to a particular type of object. For example, bit 0 for a file object is

File_Read_Data access and bit 0 for an event object is Event_Query_Status access.

The most significant 16 bits of the mask contains bits that apply to all types of objects. Five

of these are referred to as standard access types:

D
el

et
e

Re
ad

 C
on

tro
l

W
rit

e
D

A
C

W
rit

e
O

w
ne

r
Sy

nc
hr

on
iz

e
G

en
er

ic
ac

ce
ss

 ty
pe

s

St
an

da
rd

ac
ce

ss
 ty

pe
s

A
cc

es
s S

ys
te

m
 S

ec
ur

ity
M

ax
im

um
 a

llo
w

ed

G
en

er
ic

 A
ll

G
en

er
ic

 E
xe

cu
te

G
en

er
ic

 W
rit

e
G

en
er

ic
 R

ea
d

Sp
ec

ifi
c

ac
ce

ss
 ty

pe
s

Fi
gu

re
 1

6.
13

 A
cc

es
s M

as
k

-51-

• Synchronize: Gives permission to synchronize execution with some event associated with

this object. In particular, this object can be used in a wait function.

• Write_owner: Allows a program to modify the owner of the object. This is useful because

the owner of an object can always change the protection on the object (the owner may not

be denied Write DAC access).

• Write_DAC: Allows the application to modify the DACL and hence the protection on this

object.

• Read_control: Allows the application to query the owner and DACL fields of the security

descriptor of this object.

• Delete: Allows the application to delete this object.

The high-order half of the access mask also contains the four generic access types. These

bits provide a convenient way to set specific access types in a number of different object types.

For example, suppose an application wishes to create several types of objects and ensure that

users have read access to the objects, even though read has a somewhat different meaning for

each object type. To protect each object of each type without the generic access bits, the

application would have to construct a different ACE for each type of object and be careful to

pass the correct ACE when creating each object. It is more convenient to create a single ACE

that expresses the generic concept allow read, simply apply this ACE to each object that is

created, and have the right thing happen. That is the purpose of the generic access bits, which

are:

• Generic_all: Allow all access

• Generic_execute: Allow execution if executable

• Generic_write: Allow write access

• Generic_read: Allow read only access

-52-

The generic bits also affect the standard access types. For example, for a file object, the

Generic_Read bit maps to the standard bits Read_Control and Synchronize and to the object-

specific bits File_Read_Data, File_Read_Attributes, and File_Read_EA. Placing an ACE on a

file object that grants some SID Generic_Read grants those five access rights as if they had been

specified individually in the access mask.

The remaining two bits in the access mask have special meanings. The

Access_System_Security bit allows modifying audit and alarm control for this object. However,

not only must this bit be set in the ACE for a SID, but the access token for the process with that

SID must have the corresponding privilege enabled.

Finally, the Maximum_Allowed bit is not really an access bit, but a bit that modifies

Windows 's algorithm for scanning the DACL for this SID. Normally, Windows will scan

through the DACL until it reaches an ACE that specifically grants (bit set) or denies (bit not set)

the access requested by the requesting process or until it reaches the end of the DACL, in which

latter case access is denied. The Maximum_Allowed bit allows the object's owner to define a set

of access rights that is the maximum that will be allowed to a given user. With this in mind,

suppose that an application does not know all of the operations that it is going to be asked to

perform on an object during a session. There are three options for requesting access:

1. Attempt to open the object for all possible accesses. The disadvantage of this approach is

that the access may be denied even though the application may have all of the access

rights actually required for this session.

2. Only open the object when a specific access is requested, and open a new handle to the

object for each different type of request. This is generally the preferred method because it

will not unnecessarily deny access, nor will it allow more access than necessary.

However, it imposes additional overhead.

-53-

3. Attempt to open the object for as much access as the object will allow this SID. The

advantage is that the user will not be artificially denied access, but the application may

have more access than it needs. This latter situation may mask bugs in the application.

An important feature of Windows security is that applications can make use of the

Windows security framework for user-defined objects. For example, a database server might

create it own security descriptors and attach them to portions of a database. In addition to normal

read/write access constraints, the server could secure database-specific operations, such as

scrolling within a result set or performing a join. It would be the server's responsibility to define

the meaning of special rights and perform access checks. But the checks would occur in a

standard context, using systemwide user/group accounts and audit logs. The extensible security

model should prove useful to implementers of foreign files systems.

