# APPENDIX B Projects for Teaching Cryptography and Network Security

| B.1 | RESEARCH PROJECTS          | 2 |
|-----|----------------------------|---|
|     | PROGRAMMING PROJECTS       |   |
|     | LABORATORY EXERCISES       |   |
|     | WRITING ASSIGNMENTS        |   |
|     | READING/REPORT ASSIGNMENTS |   |

Analysis and observation, theory and experience must never disdain or exclude each other; on the contrary, they support each other.

-On War, Carl Von Clausewitz

Many instructors believe that research or implementation projects are crucial to the clear understanding of cryptography and network security. Without projects, it may be difficult for students to grasp some of the basic concepts and interactions among components. Projects reinforce the concepts introduced in the book, give the student a greater appreciation of how a cryptographic algorithm or protocol works, and can motivate students and give them confidence that they are capable of not only understanding but implementing the details of a security capability.

In this text, I have tried to present the concepts of cryptography and network security as clearly as possible and have provided numerous homework problems to reinforce those concepts. However, many instructors will wish to supplement this material with projects. This appendix provides some guidance in that regard and describes support material available in the instructor's supplement. The support material covers five types of projects:

- Research projects
- Programming projects
- Laboratory exercise
- Writing assignments
- Reading/report assignments

### **B.1 RESEARCH PROJECTS**

An effective way of reinforcing basic concepts from the course and for teaching students research skills is to assign a research project. Such a project could involve a literature search as

well as an Internet search of vendor products, research lab activities, and standardization efforts. Projects could be assigned to teams or, for smaller projects, to individuals. In any case, it is best to require some sort of project proposal early in the term, giving the instructor time to evaluate the proposal for appropriate topic and appropriate level of effort. Student handouts for research projects should include

- A format for the proposal
- A format for the final report
- A schedule with intermediate and final deadlines
- A list of possible project topics

The students can select one of the topics listed in the instructor's manual or devise their own comparable project. The instructor's supplement includes a suggested format for the proposal and final report as well as a list of fifteen possible research topics.

# **B.2 PROGRAMMING PROJECTS**

The programming project is a useful pedagogical tool. There are several attractive features of stand-alone programming projects that are not part of an existing security facility:

- 1. The instructor can choose from a wide variety of cryptography and network security concepts to assign projects.
- 2. The projects can be programmed by the students on any available computer and in any appropriate language; they are platform and language independent.
- **3.** The instructor need not download, install, and configure any particular infrastructure for stand-alone projects.

There is also flexibility in the size of projects. Larger projects give students more a sense of achievement, but students with less ability or fewer organizational skills can be left behind.

Larger projects usually elicit more overall effort from the best students. Smaller projects can have a higher concepts-to-code ratio, and because more of them can be assigned, the opportunity exists to address a variety of different areas.

Again, as with research projects, the students should first submit a proposal. The student handout should include the same elements listed in Section A.1. The instructor's manual includes a set of twelve possible programming projects.

The following individuals have supplied the research and programming projects suggested in the instructor's manual: Henning Schulzrinne of Columbia University; Cetin Kaya Koc of Oregon State University; and David M. Balenson of Trusted Information Systems and George Washington University.

### **B.4 LABORATORY EXERCISES**

Professor Sanjay Rao and Ruben Torres of Purdue University have prepared a set of laboratory exercises that are part of the instructor's supplement. These are implementation projects designed to be programmed on Linux but could be adapted for any Unix environment. These laboratory exercises provide realistic experience in implementing security functions and applications.

# **B.5 WRITING ASSIGNMENTS**

Writing assignments can have a powerful multiplier effect in the learning process in a technical discipline such as cryptography and network security. Adherents of the Writing Across the Curriculum (WAC) movement (<a href="http://wac.colostate.edu/">http://wac.colostate.edu/</a>) report substantial benefits of writing assignments in facilitating learning. Writing assignments lead to more detailed and complete thinking about a particular topic. In addition, writing assignments help to overcome the tendency

of students to pursue a subject with a minimum of personal engagement, just learning facts and problem-solving techniques without obtaining a deep understanding of the subject matter.

The instructor's supplement contains a number of suggested writing assignments, organized by chapter. Instructors may ultimately find that this is the most important part of their approach to teaching the material. I would greatly appreciate any feedback on this area and any suggestions for additional writing assignments.

# **B.6 READING/REPORT ASSIGNMENTS**

Another excellent way to reinforce concepts from the course and to give students research experience is to assign papers from the literature to be read and analyzed. The instructor's supplement includes a suggested list of papers, one or two per chapter, to be assigned. All of the papers are readily available either via the Internet or in any good college technical library. The instructor's supplement also includes a suggested assignment wording.