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Targeting BRAF for patients with melanoma
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The prognosis of patients with metastatic melanoma is poor and not influenced by systemic therapy with cytotoxic drugs. New
targeted agents directed against the RAS-RAF-MEK-ERK pathway show promising activity in early clinical development and particular
interest is focused on selective inhibitors of mutant BRAF, which is present in one half of the cases of metastatic melanoma. The
majority of patients on early trials of these drugs develop secondary resistance and subsequent disease progression and it is,
therefore, critical to understand the underlying escape mechanisms leading to resistance.
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MELANOMA: A HETEROGENEOUS DISEASE

Metastases develop in 10– 15% of patients with cutaneous
melanoma and there is no evidence from phase-III trials that
systemic treatment prolongs survival, nor is there an effective
adjuvant therapy after resection of high risk Stage I–III disease
(Thompson et al, 2005). Only 5% of patients with visceral
metastases survive for 2 years (Balch et al, 2001).

Understanding the genetic heterogeneity in melanoma has
become increasingly important with the development of therapies
aimed at targeting specific genetic aberrations. Of particular
importance in melanoma is the mitogen-activated protein kinase
(MAPK) pathway, which normally regulates cell growth, prolifera-
tion and differentiation (Figure 1). Aberrant activation of the
MAPK pathway is present in over 80% of primary melanomas
(Platz et al, 2008), and mutations in proteins along the RAS-RAF-
MEK-ERK pathway are thought to be mutually exclusive. Such
mutations have been documented in all subtypes of melanoma
(Curtin et al, 2005), including cutaneous (50–60% BRAF, 15%
NRAS and 17% CKIT chronic sun damage), mucosal (11% BRAF,
5% NRAS and 21% CKIT) and uveal (50% GNAQ) melanomas. The
BRAF and NRAS mutations have not been reported in uveal
melanoma to date (Populo et al, 2010).

TYPES OF BRAF MUTATIONS

Constitutively activating somatic missense mutations in BRAF
were discovered to be present in a wide variety of human cancers,
including papillary thyroid cancer (39– 69%), cholangiocarcinoma
(22%), colorectal cancer (5– 12%) and borderline ovarian cancer
(30%) (Catalogue of Somatic Mutations in Cancer (COSMIC)

website). The mutations are either in the activating segment in
exon 15 or the glycine-rich loop (P-loop) in exon 11 of the kinase
domain of the BRAF protein (Figure 2). The point mutation in
DNA (1799T-A) resulting in a single amino-acid substitution at
Valine 600 to Glutamic acid in the activating segment (V600E,
previously known as V599E) is the most common change, and is
found in 80% of the mutated tumours (Davies et al, 2002). This is
distinct from the CC-TT or C-T changes associated with
ultraviolet light exposure in non-melanoma skin cancers. BRAF
V600E results in elevated kinase activity compared with BRAF wild
type and stimulated phosphorylation of downstream endogenous
ERK (Dhomen and Marais, 2009).

Today more than 75 somatic mutations in the BRAF gene
have been identified in melanoma, and all mutations at V600 in
Exon 15 constitutively activate BRAF (Figure 2). In BRAF mutant
melanoma, 74–90% are V600E (Platz et al, 2008) and 16–29% are
V600K mutations (Thomas, 2006; Long et al, 2010). One
hypothesis for the mechanism of uncontrolled activation is the
increased exposure of the activation segment for interaction when
a small hydrophobic amino acid at 600 (Valine) is switched to a
hydrophilic residue. Normally, the RAF kinase domain in the
inactive conformation is hidden in a hydrophobic pocket (Wan
et al, 2004). A small number of mutations have reduced kinase
activity compared with wild type, for example, G465E, G465V,
D593V and G595R, but cause increased ERK activation,
possibly via binding and activation of CRAF (Houben et al,
2004; Wan et al, 2004).

PROGNOSIS OF BRAF MUTATION IN METASTATIC
MELANOMA

The frequency of BRAF mutation in primary melanomas ranges
from 36 to 45% (Curtin et al, 2005; Liu et al, 2007; Thomas et al,
2007) and 42–55% in metastatic melanoma (Houben et al, 2004;
Ugurel et al, 2007; Long et al, 2010). The presence of a BRAF
mutation in early melanoma shows no association with disease-
free interval or overall survival (Shinozaki et al, 2004). In contrast,
the presence of a BRAF mutation in metastatic melanoma is
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associated with a poorer survival from time of first metastasis
(Long et al, 2010) or time from first resected metastasis (Houben
et al, 2004), although not consistently observed in smaller studies
(Ugurel et al, 2007).

RATIONALE FOR BRAF INHIBITION IN MELANOMA

Advanced melanomas often have multiple genetic defects affecting
diverse biochemical pathways. It was, therefore, surprising that
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Figure 1 The MAPK pathway activation in melanoma. Oncogenic NRAS, BRAF, GNAQ and CKIT signal through the MAPK pathway. Oncogenic NRAS
also induces the phosphatidylinositol-30 kinase (PI3K) cascade. MAPK signalling can lead to proliferation in transformed cells, but also induces a potent form
of growth arrest, known as senescence in normal melanocytes. The approximate proportion of melanomas with mutations are shown. GPCR¼G-protein
coupled receptor.
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Figure 2 Common types of BRAF mutations in melanoma (Wan et al, 2004).

BRAF for melanoma patients

H-T Arkenau et al

2

British Journal of Cancer (2010), 1 – 7 & 2010 Cancer Research UK



those with activating BRAF mutations displayed the hallmarks
of oncogene addiction. When this single oncogenic alteration
was targeted in melanoma cell lines with specific inhibitory nucleic
acids or chemical RAF inhibitors, the cell lines displayed growth
arrest and induction of apoptosis (Calipel et al, 2003). The
behaviour of mutant BRAF melanomas in murine xenograft
models supported these preclinical findings and confirmed mutant
BRAF as an attractive target for melanoma therapy, particularly as
it occurs in at least half the tumour population, and does not occur
in normal cells. In addition, its serine/threonine kinase domain
was amenable to the rational design of selective inhibitors.

EARLY CLINICAL DATA OF RAF INHIBITORS
IN MELANOMA PATIENTS

The first RAF kinase inhibitor entering early clinical trials was the
oral diphenyl urea, sorafenib (Bay 43-9006). Sorafenib has potent
RAF isoform kinase inhibitor activities (CRAF (IC50 6 nM)4wild
type (wt) BRAF (IC50 22 nM)4mutant BRAFV599E (IC50 38 nM)), but
was also found to have a much broader inhibitory profile,
including kinases of the vascular endothelial growth factor
receptor 2 and 3 (VEGFR-2 (IC50 90 nM) and VEGFR-3 (IC50

20 nM)), the platelet-derived growth factor receptor-b(IC50 57 nM),
Flt-3 (IC50 58 nM) and c-Kit (IC50 68 nM).

In human xenograft models sorafenib resulted in prolonged
growth stabilisation rather than tumour response, perhaps
forewarning the negligible clinical activity in melanoma
patients who were treated within a discontinuation phase-II trial

(Karasarides et al, 2004; Eisen et al, 2006). These results raised
questions about the in human BRAF inhibitory activity of
sorafenib and raised scepticism about the relevance of mutant
BRAF as a target in melanoma. Activity of the drug in renal cell
and hepatocellular carcinoma has since been attributed to
promiscuous inhibitory effects on receptor tyrosine kinases,
including VEGFR, PDGFR and cKIT.

Further research led to the development of second generation
more selective RAF inhibitors, which are currently in clinical
trials (Table 1).

XL281 (famotidine) is an orally administered inhibitor of the
wt BRAF (IC50 4.5 nM), CRAF (IC50 2.5 nM) and mutant
BRAFV600E (IC50 6 nM) kinases and demonstrated potent inhibitory
effect in a variety of human xenograft models. The phase-I study of
XL281 (NCT00451880) in an unselected patient population showed
prolonged disease stabilisation in two patients with BRAFV600E

mutant papillary thyroid cancer (415 and 17 months, respec-
tively) and some minor responses in nine patients with colorectal,
ovarian and non-small-cell lung cancer. Overall XL281 was well
tolerated with acceptable rates of grade 3/4 nausea, vomiting and
diarrhoea (Schwartz et al, 2009). Currently, a three-arm dose
expansion part is expected to recruit a total of 180 patients,
including patients with melanoma, papillary thyroid and colorectal
and non-small-cell lung cancer. Results of an ongoing melanoma
phase-I/II trial (RAF265-MEL01; wt BRAF and BRAF mutant
patients included) are awaited.

PLX4032 (RO 5185426) is an ATP competitive, orally adminis-
tered BRAF inhibitor (wt BRAF IC50 100 nM) with high selectivity

Table 1 Clinical development of RAF kinase inhibitors in patients with advanced melanoma

RAF inhibitor
Chemical
class Target

Additional
target Status n

Clinical
outcome

Toxicity profile
grade X2

Non-selective RAF inhibitors
Sorafenib Diphenyl urea CRAF,

BRAFwt,
BRAFV599E

VEGFR-2&3,
PDGFR-b, FGFR-1,
Flt-3, c-Kit

Phase-II 37 SD 19% Diarhea, HFS

+ Temsirolimus Phase-I/II 69 Diarrhea, rash
Hyperlipidemia

+/� Dacarbazine Phase-II 101 Improved PFS¼NS,
OS¼NS

Haemtox, nausea,
hypertension, bleeding lipase

+/ Carboplatin/
paclitaxel

Phase-III (first-line) 270 PFS¼NS Haemtox, nausea, neuropathy,
rash, HFS

+/� Carboplatin/
paclitaxel

Phase-III (second-line) 823 OS¼NS Haemtox, nausea, neuropathy,
rash, HFS

RAF265 Benzazole CRAF,
BRAFwt,
BRAFV600E

VEGFR-2 Phase-I/II (ST) 211 Recruiting

Selective RAF inhibitors
PLX4032 Pyrrolo,

pyridine
BRAFV600E,
BRAFwt,
CRAF

Phase-I (ST) RR 58%a (PFS 9
monthsa)

Fatigue, rash, arthralgia, SCC

Phase-II 100 Results awaited
Phase-III 680 Recruiting

GSK 2118436 Thiazole BRAFV600E,K,D

CRAF
BRAFwt

Phase-I/II (ST) 100 RR 63%a Nausea, Fatigue
Headache
Fever
Rash
SCC

Phase-III Planned
+ GSK 1120212
(MEK-I)

Phase-I 93 Recruiting

XL281 CRAF,
BRAF wt,
BRAFV600E

Phase-I (ST) 180 Results awaited Fatigue, N/V
Diarrhea

Abbreviations: HFS¼ hand-foot syndrome; NS¼ not significant; OS¼ overall survival; PFS¼ progression-free survival; RR¼ response rate; SCC¼ squamous cell carcinoma;
SD¼ stable disease; ST¼ solid tumour. aAt the recommended phase-II dose level in melanoma subgroup
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for the mutant allele (BRAFV600E IC50 31 nM) and has shown
selective tumour suppression in mutant BRAF cell lines and
xenograft models. In a phase-I clinical trial enriched for patients
with mutant BRAF metastatic melanoma 11/16 (68%) achieved
partial response (PR) and four patients had minor responses
leading to a progression-free survival (PFS) of 8 –9 months
(Flaherty et al, 2009). The dose expansion cohort enroled a selected
group of BRAFV600E melanoma patients (n¼ 32) at the MTD dose
level of 960 mg twice daily (Chapman et al, 2009). In this group,
a total of 26 patients (81%) had response (two CR and 24 PR).
Overall PLX4032 was well tolerated with mild nausea and vomiting,
skin rash and diarrhoea, but 21% of the patients on active doses
developed cutaneous neoplasms, including keratoacanthoma (KA),
low-grade squamous cell carcinoma (SCC) and verrucal-like
lesions. These lesions occurred within 8– 12 weeks from treatment
start and were resectable (Flaherty et al, 2010a, b). On the basis of
these promising results, a phase-II trial (BRIM 2, NCT00949702) is
now fully accrued and a phase-III trial (BRIM3, NCT01006980)
comparing PLX4032 to standard chemotherapy with the alkylating
agent dacarbazine in untreated patients with BRAFV600E mutant
metastatic melanoma is underway.

GSK 2118436 is an ATP competitive, reversible inhibitor
of the mutant BRAFV600E/K/D (IC50 0.5, 0.6, 1.9 nM, respectively),
wt BRAF (IC50 12 nM) and CRAF (IC50 5 nM) kinases with
promising preclinical efficacy data in melanoma. A phase-I trial
(NCT00880321) of this oral compound enroled 4100 patients with
BRAF mutations (primarily melanoma patients) (Kefford et al,
2010). Overall GSK 2118436 showed good tolerability with grade
1/2 nausea, fatigue, fever, headaches and skin rash as the main side
effects. In total, 9% of the patients developed cutaneous
neoplasms, including low-grade SCC that occurred between weeks
2 and 14. Preliminary pharmacodynamic data showed dose-
dependent phospho-ERK inhibition and a correlation with clinical
response. Clinical responses (63% PR) were seen at the recom-
mended phase-II dose (150 mg twice daily), with responses in lung,
liver, bone and brain metastases. Importantly, these responses
were not only seen in patients with BRAFV600E but also in
BRAFV600K and BRAFV600G mutations, and possibly shows the
wider range of activity of selective BRAF inhibitors that are not
limited only to BRAFV600E-mutant tumours. These findings were
also supported by a recent case report of the BRAF inhibitor
PLX4032 in a BRAFV600K mutant patient (Rubinstein et al, 2010).

A phase-II study of GSK 2118436 is currently underway
as salvage therapy in mutant BRAF metastatic melanoma and a
phase-I study has commenced of GSK 2118436 in combination
with the MEK-inhibitor, GSK1120212, (NCT01072175) in BRAF
mutant melanoma patients, a strategy of tandem MAPK inhibition.

Other selective B-RAF inhibitors are currently in preclinical and
early clinical development and include GDC-0879, ARQ736 and
AZ628, among others.

SPECIFIC SIDE EFFECTS OF SELECTIVE RAF
INHIBITORS

Selective RAF inhibitors display good tolerability with infrequent
severe toxicities. Among the common grade 1– 2 adverse
events are skin changes (50–70%), fatigue (30– 50%), diarrhoea
(10– 30%) and nausea (10–20%). In the GSK 2118436 phase-I trial,
29% of patients reported mild grade 1/2 headaches and a possible
cytokine-related fever in 37% of the patients.

Most concerning was the development of cutaneous lesions,
including KA and SCC in 15–30% of patients on the GSK 2118436
and the PLX4032 studies (Flaherty et al, 2010a, b; Kefford et al,
2010). The biology and natural history of these lesions, in
comparison to their spontaneouas counterparts is unknown, and
no systemic spread has been reported to date. One possibility
to explain the underlying mechanism could be an exacerbation

of upstream RAS mutations in pre-existing skin lesions. RAS
mutations occur in approximately 15% of SCCs and, under these
conditions, alterations in downstream dimerisation of BRAF by
selective BRAF inhibitors could lead to paradoxical activation
of the MAPK pathway in squamous cells.

Notably, the phenomenon of paradoxical activation of the MAP
kinase pathway has been reported with mutant-selective BRAF
inhibitors under certain conditions (Hatzivassiliou et al, 2010;
Heidorn et al, 2010; Poulikakos et al, 2010). Although inhibition of
MEK and ERK phosphorylation was achieved in BRAFV600E/K

mutant melanoma, significantly increased tumour growth was seen
in BRAF wild-type melanomas with upstream RAS mutations. It is
proposed that in BRAF wild-type tumours BRAF signalling is
usually inactivated via BRAF-induced autophosphorylation, but
this self-inhibitory process is interrupted by selective BRAF
inhibition. Subsequently, in a RAS-dependent manner BRAF is
recruited to the plasma membrane and hyper-activates CRAF,
which in turn signals downstream to MEK and ERK. This
phenomenon was not observed with non-selective RAF inhibitors,
probably because of the promiscuous pan-RAF inhibitory effects.
Similar mechanisms are thought to underlie the induction of
pre-malignant and malignant changes in keratinocytes. Some of
the skin changes seen in patients on selective RAF inhibitors
mimic those seen in patients with hereditary gain-of-function
mutations in the MAP kinase pathway (Roberts et al, 2006), and
the frequent induction of SCCs may be due to the same process in
keratinocytes carrying RAS mutations.

These findings have important clinical implications, and
highlight the need for genotyping tumours before treatment with
selective RAF inhibitors and screening for secondary tumours.

MECHANISM OF RESISTANCE

Similar to other kinase inhibitors (i.e., erlotinib and imatinib),
selective RAF inhibitors can lead to drastic and impressive early
tumour responses in humans, which may be of short duration in
some patients. Approximately 20% of patients with mutant BRAF
melanoma show no response, and most patients relapse, with a
median PFS of 8–9 months.

In preclinical studies, a subset of resistant BRAFV600E mutant
cell lines demonstrated increased CRAF signalling via BRAF/
CRAF heterodimerisation and resulted in a shift from B-RAF
to CRAF dependency. In addition post-transcriptional elevation
of CRAF protein levels are thought to decrease intracellular
bioavailability of the selective RAF inhibitor AZ628 and subse-
quent development of resistance (Montagut et al, 2008).

Amplification of the CCND1 gene resulting in cyclin D1 over-
expression has been reported to be present in 17% of mutant
BRAFV600E melanomas with independent stimulatory effects on
cell-cycle progression via CDK4 (Smalley et al, 2008). Furthermore,
point mutations of the downstream kinase isoform MEK1 (P124L,
P124S and Q56P), have resulted in changes of the allosteric drug-
binding pocket within helices A and C leading to sub-optimal drug
binding of the selective RAF inhibitor PLX4720 in mutant
melanoma cells in cell culture and in vivo (Emery et al, 2009).

RELEVANCE OF THE AKT PATHWAY

Preclinical studies have demonstrated a close interconnection
of the RAS-RAF-MEK-ERK and the PI3K-AKT-mTOR signalling
pathways, with complex inter-related feedback loops. For example,
NRAS is mutated in about 15% of melanoma and can activate both
the signalling pathways. Although BRAF and NRAS mutations are
mutually exclusive in the majority of melanomas, dual pathway
signalling is also frequently seen in melanoma through functional
loss (deletion, silencing and/or mutation) of the tumour suppressor
gene PTEN (Figure 1). Both, genetic changes are seen in
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approximately 20% of melanomas (Dankort et al, 2009). As a
major regulator of the PI3K-AKT axis PTEN loss leads to
activation of the AKT/mTOR pathway and, via feedback loops,
to phosphorylation of MEK and ERK (Tsao et al, 2004).

AKT has a central role in regulating apoptosis and over-
expression (via amplification or mutation) of the isoform AKT3
correlates with tumour progression. Recent preclinical studies
have shown that inhibitors of PI3K and AKT3 increased apop-
tosis and stimulated tumour regression (Cheung et al, 2008). In
BRAFV600E mutant cells, AKT activation was required for
melanoma initiation, demonstrating the inter-dependence of these
two pathways in melanoma.

Downstream of AKT, increased signalling via mTOR regulates
translation of pro-proliferative proteins. In preclinical studies,
the mTOR inhibitor temsirolimus reversed these effects, however,
this was not reproducible in clinical melanoma trials (Margolin
et al, 2005). These findings could be in part explained by the
dual signalling complex of mTOR, including TORC 1 and TORC2.
Although temsirolimus (and other rapalogs) inhibits mTOR
via TORC1, the uninhibited TORC2 complex continues to
stimulate AKT through phosphorylation (Feldman and Shokat,
2011). Trials of dual TORC1 and TORC2 inhibitors are currently in
phase-I studies to inhibit both AKT and mTOR signalling.

RATIONALLY DESIGNED COMBINATION DRUG
THERAPY

There is increasing evidence that combination therapies targeting
the RAS-RAF-MEK-ERK and the PI3K-AKT-mTOR may be
more effective than single-agent therapies. For example in three-
dimensional cell cultures of BRAF mutant melanoma the
combination of BRAF and AKT3 directed siRNAs demonstrated
significantly higher reduction of tumour growth compared with
weak growth inhibition by single-agent administration (Cheung
et al, 2008). These findings were confirmed in a melanoma
xenograft model (Bedogni et al, 2006). There is evidence of
synergism when MEK and PI3K inhibitors are combined and
increased apoptotic activity was also demonstrated with a
combination of the mTOR inhibitor rapamycin and sorafenib or
an MEK inhibitor (Lasithiotakis et al, 2008). In contrast to single-
agent activity, these combinations resulted in complete down-
regulation of the anti-apoptotic proteins Bcl-2 and Mcl-1.

Preclinical studies have also shown a synergism between BRAF
and MEK inhibitors, with significantly increased apoptosis and
prolonged phospho-ERK inhibition compared with BRAF inhibi-
tion alone (Paraiso et al, 2010). This hypothesis is currently tested
in two phase-I studies. The study, NCT01072175, combines the
selective RAF inhibitor, GSK 2118436, and MEK inhibitor,
GSK1120212, in patients with BRAF mutant metastatic melanoma
and the study, NCT01037127, explores the efficacy of the MEK
inhibitor, GSK1120212, in patients with BRAF mutant tumours
who previously failed a selective BRAF inhibitor. The design of
these trials rests on the observation that MEK activation persists in
melanoma cell lines that develop resistance to BRAF inhibition
(Montagut et al, 2008; Smalley et al, 2008).

Currently, clinical trials of selective RAF inhibitors in combina-
tion with other kinase inhibitors, such as MEK, mTOR, PI3K or
AKT are underway or planned. Issues related to these combina-
tions include overlapping or synergistic toxicities and mechanisms
of resistance.

COMBINATIONS OF RAF INHIBITORS WITH
CHEMOTHERAPY

Although the combination of sorafenib and dacarbazine resulted in
24% response rates compared with 12% with dacarbazine alone,

there was no effect on the primary endpoint of PFS (McDermott
et al, 2008). Two large phase-III trials of sorafenib in combination
with carboplatin/paclitaxel in chemotherapy-naive (Flaherty et al,
2010a, b) and pre-treated (Hauschild et al, 2009) patients with
BRAF undefined metastatic melanoma did not meet the primary
endpoint of improved overall survival.

Whether combinations of selective RAF inhibitors in patients
with BRAF mutant melanoma will result in better outcomes
remains to be investigated.

Moreover, there is compelling evidence to combine chemo-
therapy with other inhibitors of the RAS-RAF-MEK-ERK and
PI3K-AKT-mTOR pathways.

For example, preclinical data suggest that taxane resistance may
be due to increased MEK signalling resulting in anti-apoptotic
changes (Haass et al, 2009). On the basis of these results a phase-II
trial of a taxane-based chemotherapy plus the MEK inhibitor AZD
6244 is in preparation and patients will be randomised according
to their BRAF/NRAS mutational status.

The commonly used chemotherapy agents, cisplatin and
temozolomide, have the potential to trigger pro-survival and
anti-apoptotic effects by activating the AKT signalling pathway
(Sinnberg et al, 2009). Interestingly, AKT inhibitors reverse these
effects in preclinical studies by reducing the anti-apoptotic
proteins Bcl-2 and Mcl-1. On this basis, clinical trials of
combinations of PI3K/AKT/mTOR inhibitors with temozolomide
or cisplatin are underway.

OTHER COMBINATIONS OF SELECTIVE RAF
INHIBITORS

Heat-shock protein 90 (HSP90) is a molecular chaperone
responsible for degradation, stabilisation and activation of a
variety of proteins, including HER2, CRAF, BRAF, AKT and MET.
In melanoma, HSP90 stabilises CRAF and ARAF and is required
for the activity of BRAFV600E. In patients with mutant BRAF
melanoma a combination of a selective RAF inhibitor with an
HSP90 inhibitor may, therefore, inhibit multiple pathways
involved in resistance. This rationale is supported by preclinical
data of the HSP90 inhibitor geldanamycin (Banerji, 2009), which
promotes the degradation of CRAF, a protein known to be
commonly over-expressed in resistant BRAF mutant cells.

Epigenetic changes via DNA hyper-methylation or changes in
DNA remodelling have an important role in cancer development.
For example, epigenetic silencing is a frequent mechanism of
functional loss of the tumour suppressor gene PTEN in melanoma.
Agents, such as the histone deacetylating inhibitors (HDACIs),
may restore the tumour supressor function by reversing the effects
of epigenetic silencing (Kuwajima et al, 2007). Current single-agent
HDACI trials show promising results in melanoma patients (Ryan
et al, 2005) and combinations with selective BRAF inhibitors are
planned.

CONCLUSION

Clinical trials of new selective RAF inhibitors are currently
recruiting, and two recent ‘proof of concept’ phase-I studies have
shown activity in metastatic melanoma, a disease notoriously
resistant to systemic treatment.

Despite this progress there are important questions to be
addressed in current and planned clinical trials. These include the
impact of selective BRAF inhibitors on overall survival and quality
of life, the identification of biomarkers of early resistance and
relapse, the selection and scheduling of drugs to combine with
BRAF inhibitors, and the mechanism and prevention of adverse
events, such as SCC.
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