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90 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Windows is not a full-blown object-oriented OS. It is not implemented in an
object-oriented language. Data structures that reside completely within one Execu-
tive component are not represented as objects. Nevertheless, Windows illustrates
the power of object-oriented technology and represents the increasing trend toward
the use of this technology in OS design.

2.6 TRADITIONAL UNIX SYSTEMS

History

The history of UNIX is an oft-told tale and will not be repeated in great detail here.
Instead, we provide a brief summary.

UNIX was initially developed at Bell Labs and became operational on a PDP-7
in 1970. Some of the people involved at Bell Labs had also participated in the time-
sharing work being done at MIT’s Project MAC. That project led to the development
of first CTSS and then Multics. Although it is common to say that the original UNIX
was a scaled-down version of Multics, the developers of UNIX actually claimed to be
more influenced by CTSS [RITC78]. Nevertheless, UNIX incorporated many ideas
from Multics.

Work on UNIX at Bell Labs, and later elsewhere, produced a series of versions
of UNIX.The first notable milestone was porting the UNIX system from the PDP-7
to the PDP-11. This was the first hint that UNIX would be an operating system for
all computers. The next important milestone was the rewriting of UNIX in the pro-
gramming language C. This was an unheard-of strategy at the time. It was generally
felt that something as complex as an operating system, which must deal with time-
critical events, had to be written exclusively in assembly language. Reasons for this
attitude include the following:

• Memory (both RAM and secondary store) was small and expensive by today’s
standards, so effective use was important. This included various techniques for
overlaying memory with different code and data segments, and self-modifying
code.

• Even though compilers had been available since the 1950s, the computer in-
dustry was generally skeptical of the quality of automatically generated code.
With resource capacity small, efficient code, both in terms of time and space,
was essential.

• Processor and bus speeds were relatively slow, so saving clock cycles could
make a substantial difference in execution time.

The C implementation demonstrated the advantages of using a high-level lan-
guage for most if not all of the system code. Today, virtually all UNIX implementa-
tions are written in C.

These early versions of UNIX were popular within Bell Labs. In 1974, the
UNIX system was described in a technical journal for the first time [RITC74]. This
spurred great interest in the system. Licenses for UNIX were provided to commer-
cial institutions as well as universities. The first widely available version outside Bell
Labs was Version 6, in 1976.The follow-on Version 7, released in 1978, is the ancestor

M02_STAL6329_06_SE_C02.QXD  2/22/08  7:02 PM  Page 90



2.6 / TRADITIONAL UNIX SYSTEMS 91

of most modern UNIX systems.The most important of the non-AT&T systems to be
developed was done at the University of California at Berkeley, called UNIX BSD
(Berkeley Software Distribution), running first on PDP and then VAX computers.
AT&T continued to develop and refine the system. By 1982, Bell Labs had combined
several AT&T variants of UNIX into a single system, marketed commercially as
UNIX System III. A number of features was later added to the operating system to
produce UNIX System V.

Description

Figure 2.14 provides a general description of the classic UNIX architecture. The un-
derlying hardware is surrounded by the OS software. The OS is often called the sys-
tem kernel, or simply the kernel, to emphasize its isolation from the user and
applications. It is the UNIX kernel that we will be concerned with in our use of
UNIX as an example in this book. UNIX also comes equipped with a number of
user services and interfaces that are considered part of the system. These can be
grouped into the shell, other interface software, and the components of the C com-
piler (compiler, assembler, loader).The layer outside of this consists of user applica-
tions and the user interface to the C compiler.

A closer look at the kernel is provided in Figure 2.15. User programs can in-
voke OS services either directly or through library programs. The system call inter-
face is the boundary with the user and allows higher-level software to gain access to
specific kernel functions. At the other end, the OS contains primitive routines that
interact directly with the hardware. Between these two interfaces, the system is di-
vided into two main parts, one concerned with process control and the other con-
cerned with file management and I/O. The process control subsystem is responsible

Hardware

Kernel

System call
interface

UNIX commands
and libraries

User-written
applications

Figure 2.14 General UNIX Architecture
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92 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

for memory management, the scheduling and dispatching of processes, and the syn-
chronization and interprocess communication of processes. The file system ex-
changes data between memory and external devices either as a stream of characters
or in blocks. To achieve this, a variety of device drivers are used. For block-oriented
transfers, a disk cache approach is used: a system buffer in main memory is inter-
posed between the user address space and the external device.

The description in this subsection has dealt with what might be termed traditional
UNIX systems; [VAHA96] uses this term to refer to System V Release 3 (SVR3),
4.3BSD, and earlier versions. The following general statements may be made about
a traditional UNIX system. It is designed to run on a single processor and lacks the
ability to protect its data structures from concurrent access by multiple processors.
Its kernel is not very versatile, supporting a single type of file system, process sched-
uling policy, and executable file format.The traditional UNIX kernel is not designed
to be extensible and has few facilities for code reuse. The result is that, as new fea-
tures were added to the various UNIX versions, much new code had to be added,
yielding a bloated and unmodular kernel.

Hardware
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Kernel level

User level

User programs

Trap

Hardware control

System call interface

Libraries

Device drivers

File subsystem
Process
control

subsystem

Character Block

Buffer cache

Interprocess
communication

Scheduler

Memory
management

Figure 2.15 Traditional UNIX Kernel
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2.7 / MODERN UNIX SYSTEMS 93

2.7 MODERN UNIX SYSTEMS

As UNIX evolved, the number of different implementations proliferated, each pro-
viding some useful features. There was a need to produce a new implementation
that unified many of the important innovations, added other modern OS design fea-
tures, and produced a more modular architecture. Typical of the modern UNIX ker-
nel is the architecture depicted in Figure 2.16. There is a small core of facilities,
written in a modular fashion, that provide functions and services needed by a num-
ber of OS processes. Each of the outer circles represents functions and an interface
that may be implemented in a variety of ways.

We now turn to some examples of modern UNIX systems.

System V Release 4 (SVR4)

SVR4, developed jointly by AT&T and Sun Microsystems, combines features from
SVR3, 4.3BSD, Microsoft Xenix System V, and SunOS. It was almost a total rewrite
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Figure 2.16 Modern UNIX Kernel
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94 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

of the System V kernel and produced a clean, if complex, implementation. New fea-
tures in the release include real-time processing support, process scheduling classes,
dynamically allocated data structures, virtual memory management, virtual file sys-
tem, and a preemptive kernel.

SVR4 draws on the efforts of both commercial and academic designers and
was developed to provide a uniform platform for commercial UNIX deployment. It
has succeeded in this objective and is perhaps the most important UNIX variant. It
incorporates most of the important features ever developed on any UNIX system
and does so in an integrated, commercially viable fashion. SVR4 runs on processors
ranging from 32-bit microprocessors up to supercomputers.

BSD

The Berkeley Software Distribution (BSD) series of UNIX releases have played a
key role in the development of OS design theory. 4.xBSD is widely used in academic
installations and has served as the basis of a number of commercial UNIX products.
It is probably safe to say that BSD is responsible for much of the popularity of
UNIX and that most enhancements to UNIX first appeared in BSD versions.

4.4BSD was the final version of BSD to be released by Berkeley, with the de-
sign and implementation organization subsequently dissolved. It is a major upgrade
to 4.3BSD and includes a new virtual memory system, changes in the kernel struc-
ture, and a long list of other feature enhancements.

One of the most widely used and best documented versions of BSD is
FreeBSD. FreeBSD is popular for Internet-based servers and firewalls and is used in
a number of embedded systems.

The latest version of the Macintosh operating system, Mac OS X, is based on
FreeBSD 5.0 and the Mach 3.0 microkernel.

Solaris 10

Solaris is Sun’s SVR4-based UNIX release, with the latest version being 10. Solaris
provides all of the features of SVR4 plus a number of more advanced features, such
as a fully preemptable, multithreaded kernel, full support for SMP, and an object-
oriented interface to file systems. Solaris is the most widely used and most success-
ful commercial UNIX implementation.

2.8 LINUX

History

Linux started out as a UNIX variant for the IBM PC (Intel 80386) architecture.
Linus Torvalds, a Finnish student of computer science, wrote the initial version. Tor-
valds posted an early version of Linux on the Internet in 1991. Since then, a number
of people, collaborating over the Internet, have contributed to the development of
Linux, all under the control of Torvalds. Because Linux is free and the source code is
available, it became an early alternative to other UNIX workstations, such as those
offered by Sun Microsystems and IBM.Today, Linux is a full-featured UNIX system
that runs on all of these platforms and more, including Intel Pentium and Itanium,
and the Motorola/IBM PowerPC.
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to the outside world via wide area networks and the Internet.Traditionally, a firewall is
a dedicated computer that interfaces with computers outside a network and has special
security precautions built into it in order to protect sensitive files on computers within
the network. It is used to service outside network, especially Internet, connections and
dial-in lines. Personal firewalls that are implemented in hardware or software, and
associated with a single workstation or PC, are also common.

[BELL94] lists the following design goals for a firewall:

1. All traffic from inside to outside, and vice versa, must pass through the fire-
wall. This is achieved by physically blocking all access to the local network ex-
cept via the firewall. Various configurations are possible, as explained later in
this chapter.

2. Only authorized traffic, as defined by the local security policy, will be allowed
to pass. Various types of firewalls are used, which implement various types of
security policies.

3. The firewall itself is immune to penetration.This implies the use of a hardened
system with a secured operating system.Trusted computer systems are suitable
for hosting a firewall and often required in government applications.

3.7 UNIX SVR4 PROCESS MANAGEMENT

UNIX System V makes use of a simple but powerful process facility that is highly
visible to the user. UNIX follows the model of Figure 3.15b, in which most of the OS
executes within the environment of a user process. UNIX uses two categories of
processes: system processes and user processes. System processes run in kernel
mode and execute operating system code to perform administrative and housekeep-
ing functions, such as allocation of memory and process swapping. User processes
operate in user mode to execute user programs and utilities and in kernel mode to
execute instructions that belong to the kernel.A user process enters kernel mode by
issuing a system call, when an exception (fault) is generated, or when an interrupt
occurs.

Process States

A total of nine process states are recognized by the UNIX SVR4 operating system;
these are listed in Table 3.9 and a state transition diagram is shown in Figure 3.17
(based on figure in [BACH86]). This figure is similar to Figure 3.9b, with the two
UNIX sleeping states corresponding to the two blocked states. The differences are
as follows:

• UNIX employs two Running states to indicate whether the process is execut-
ing in user mode or kernel mode.

• A distinction is made between the two states: (Ready to Run, in Memory) and
(Preempted). These are essentially the same state, as indicated by the dotted line
joining them.The distinction is made to emphasize the way in which the preempted
state is entered.When a process is running in kernel mode (as a result of a super-
visor call, clock interrupt, or I/O interrupt), there will come a time when the kernel
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148 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

has completed its work and is ready to return control to the user program.At this
point, the kernel may decide to preempt the current process in favor of one that is
ready and of higher priority. In that case, the current process moves to the pre-
empted state. However, for purposes of dispatching, those processes in the pre-
empted state and those in the Ready to Run, in Memory state form one queue.

Table 3.9 UNIX Process States

User Running Executing in user mode.

Kernel Running Executing in kernel mode.

Ready to Run, in
Memory

Ready to run as soon as the kernel schedules it.

Asleep in Memory Unable to execute until an event occurs; process is in main memory (a blocked state).

Ready to Run,
Swapped

Process is ready to run, but the swapper must swap the process into main memory be-
fore the kernel can schedule it to execute.

Sleeping, Swapped The process is awaiting an event and has been swapped to secondary storage (a
blocked state).

Preempted Process is returning from kernel to user mode, but the kernel preempts it and does a
process switch to schedule another process.

Created Process is newly created and not yet ready to run.

Zombie Process no longer exists, but it leaves a record for its parent process to collect.

Fork

Not Enough Memory
(swapping system only)

Enough
Memory

Swap In

Swap Out

Swap Out

WakeupWakeupSleep

Return

Preempt

Return
to User

System Call,
Interrupt

Exit

Reschedule
Process

Interrupt,
Interrupt Return

Preempted
Created

Ready to run
swapped

Ready to run
in memory

Kernel
running

Zombie Asleep in
memory

Sleep,
swapped

User
running

Figure 3.17 UNIX Process State Transition Diagram
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Preemption can only occur when a process is about to move from kernel mode
to user mode. While a process is running in kernel mode, it may not be preempted.
This makes UNIX unsuitable for real-time processing. Chapter 10 discusses the re-
quirements for real-time processing.

Two processes are unique in UNIX. Process 0 is a special process that is created
when the system boots; in effect, it is predefined as a data structure loaded at boot
time. It is the swapper process. In addition, process 0 spawns process 1, referred to as
the init process; all other processes in the system have process 1 as an ancestor.When
a new interactive user logs onto the system, it is process 1 that creates a user process
for that user. Subsequently, the user process can create child processes in a branching
tree, so that any particular application can consist of a number of related processes.

Process Description

A process in UNIX is a rather complex set of data structures that provide the OS
with all of the information necessary to manage and dispatch processes. Table 3.10
summarizes the elements of the process image, which are organized into three parts:
user-level context, register context, and system-level context.

The user-level context contains the basic elements of a user’s program and can
be generated directly from a compiled object file. The user’s program is separated

Table 3.10 UNIX Process Image

User-Level Context

Process text Executable machine instructions of the program

Process data Data accessible by the program of this process

User stack Contains the arguments, local variables, and pointers for functions executing in user
mode

Shared memory Memory shared with other processes, used for interprocess communication

Register Context

Program counter Address of next instruction to be executed; may be in kernel or user memory space of
this process

Processor status
register

Contains the hardware status at the time of preemption; contents and format are hard-
ware dependent

Stack pointer Points to the top of the kernel or user stack, depending on the mode of operation at
the time or preemption

General-purpose
registers

Hardware dependent

System-Level Context

Process table entry Defines state of a process; this information is always accessible to the operating
system

U (user) area Process control information that needs to be accessed only in the context of the
process

Per process region
table

Defines the mapping from virtual to physical addresses; also contains a permission
field that indicates the type of access allowed the process: read-only, read-write, or
read-execute

Kernel stack Contains the stack frame of kernel procedures as the process executes in kernel mode
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150 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

into text and data areas; the text area is read-only and is intended to hold the pro-
gram’s instructions. While the process is executing, the processor uses the user stack
area for procedure calls and returns and parameter passing. The shared memory
area is a data area that is shared with other processes. There is only one physical
copy of a shared memory area, but, by the use of virtual memory, it appears to each
sharing process that the shared memory region is in its address space. When a
process is not running, the processor status information is stored in the register
context area.

The system-level context contains the remaining information that the OS
needs to manage the process. It consists of a static part, which is fixed in size and
stays with a process throughout its lifetime, and a dynamic part, which varies in size
through the life of the process. One element of the static part is the process table
entry. This is actually part of the process table maintained by the OS, with one entry
per process. The process table entry contains process control information that is ac-
cessible to the kernel at all times; hence, in a virtual memory system, all process
table entries are maintained in main memory. Table 3.11 lists the contents of a
process table entry. The user area, or U area, contains additional process control in-
formation that is needed by the kernel when it is executing in the context of this
process; it is also used when paging processes to and from memory. Table 3.12 shows
the contents of this table.

The distinction between the process table entry and the U area reflects the
fact that the UNIX kernel always executes in the context of some process. Much of
the time, the kernel will be dealing with the concerns of that process. However, some
of the time, such as when the kernel is performing a scheduling algorithm prepara-
tory to dispatching another process, it will need access to information about other

Table 3.11 UNIX Process Table Entry

Process status Current state of process.

Pointers To U area and process memory area (text, data, stack).

Process size Enables the operating system to know how much space to allocate the process.

User
identifiers

The real user ID identifies the user who is responsible for the running process. The effective
user ID may be used by a process to gain temporary privileges associated with a particular
program; while that program is being executed as part of the process, the process operates
with the effective user ID.

Process identi-
fiers

ID of this process; ID of parent process. These are set up when the process enters the Created
state during the fork system call.

Event
descriptor

Valid when a process is in a sleeping state; when the event occurs, the process is transferred
to a ready-to-run state.

Priority Used for process scheduling.

Signal Enumerates signals sent to a process but not yet handled.

Timers Include process execution time, kernel resource utilization, and user-set timer used to send
alarm signal to a process.

P_link Pointer to the next link in the ready queue (valid if process is ready to execute).

Memory
status

Indicates whether process image is in main memory or swapped out. If it is in memory, this
field also indicates whether it may be swapped out or is temporarily locked into main memory.

M03_STAL6329_06_SE_C03.QXD  2/13/08  2:26 PM  Page 150



3.7 / UNIX SVR4 PROCESS MANAGEMENT 151

processes. The information in a process table can be accessed when the given
process is not the current one.

The third static portion of the system-level context is the per process region
table, which is used by the memory management system. Finally, the kernel stack is
the dynamic portion of the system-level context. This stack is used when the process
is executing in kernel mode and contains the information that must be saved and re-
stored as procedure calls and interrupts occur.

Process Control

Process creation in UNIX is made by means of the kernel system call,fork( ).When
a process issues a fork request, the OS performs the following functions [BACH86]:

1. It allocates a slot in the process table for the new process.
2. It assigns a unique process ID to the child process.
3. It makes a copy of the process image of the parent, with the exception of any

shared memory.
4. It increments counters for any files owned by the parent, to reflect that an addi-

tional process now also owns those files.
5. It assigns the child process to the Ready to Run state.
6. It returns the ID number of the child to the parent process, and a 0 value to the

child process.

Table 3.12 UNIX U Area

Process table
pointer

Indicates entry that corresponds to the U area.

User identifiers Real and effective user IDs. Used to determine user privileges.

Timers Record time that the process (and its descendants) spent executing in user mode and in
kernel mode.

Signal-handler
array

For each type of signal defined in the system, indicates how the process will react to
receipt of that signal (exit, ignore, execute specified user function).

Control terminal Indicates login terminal for this process, if one exists.

Error field Records errors encountered during a system call.

Return value Contains the result of system calls.

I/O parameters Describe the amount of data to transfer, the address of the source (or target) data array
in user space, and file offsets for I/O.

File parameters Current directory and current root describe the file system environment of the 
process.

User file descrip-
tor table

Records the files the process has open.

Limit fields Restrict the size of the process and the size of a file it can write.

Permission modes
fields

Mask mode settings on files the process creates.
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All of this work is accomplished in kernel mode in the parent process. When
the kernel has completed these functions it can do one of the following, as part of
the dispatcher routine:

• Stay in the parent process. Control returns to user mode at the point of the
fork call of the parent.

• Transfer control to the child process. The child process begins executing at
the same point in the code as the parent, namely at the return from the
fork call.

• Transfer control to another process. Both parent and child are left in the
Ready to Run state.

It is perhaps difficult to visualize this method of process creation because both
parent and child are executing the same passage of code. The difference is this:
When the return from the fork occurs, the return parameter is tested. If the value is
zero, then this is the child process, and a branch can be executed to the appropriate
user program to continue execution. If the value is nonzero, then this is the parent
process, and the main line of execution can continue.

3.8 SUMMARY

The most fundamental concept in a modern OS is the process. The principal func-
tion of the OS is to create, manage, and terminate processes. While processes are
active, the OS must see that each is allocated time for execution by the processor,
coordinate their activities, manage conflicting demands, and allocate system re-
sources to processes.

To perform its process management functions, the OS maintains a description
of each process, or process image, which includes the address space within which the
process executes, and a process control block. The latter contains all of the informa-
tion that is required by the OS to manage the process, including its current state, re-
sources allocated to it, priority, and other relevant data.

During its lifetime, a process moves among a number of states. The most im-
portant of these are Ready, Running, and Blocked. A ready process is one that is
not currently executing but that is ready to be executed as soon as the OS dis-
patches it. The running process is that process that is currently being executed by
the processor. In a multiple-processor system, more than one process can be in this
state. A blocked process is waiting for the completion of some event, such as an I/O
operation.

A running process is interrupted either by an interrupt, which is an event
that occurs outside the process and that is recognized by the processor, or by exe-
cuting a supervisor call to the OS. In either case, the processor performs a mode
switch, transferring control to an operating system routine. The OS, after it has
completed necessary work, may resume the interrupted process or switch to some
other process.
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subsystem to exploit the Windows process and thread features to emulate the
process and thread facilities of its corresponding OS. This area of process/thread
management is complicated, and we give only a brief overview here.

Process creation begins with a request for a new process from an application.
The application issues a create-process request to the corresponding protected sub-
system, which passes the request to the Windows executive. The executive creates a
process object and returns a handle to that object to the subsystem. When Windows
creates a process, it does not automatically create a thread. In the case of Win32, a
new process is always created with a thread. Therefore, for these operating systems,
the subsystem calls the Windows process manager again to create a thread for the
new process, receiving a thread handle back from Windows. The appropriate thread
and process information are then returned to the application. In the case of 16-bit
Windows and POSIX, threads are not supported.Therefore, for these operating sys-
tems, the subsystem obtains a thread for the new process from Windows so that the
process may be activated but returns only process information to the application.
The fact that the application process is implemented using a thread is not visible to
the application.

When a new process is created in Win32, the new process inherits many of
its attributes from the creating process. However, in the Windows environment,
this process creation is done indirectly. An application client process issues its
process creation request to the OS subsystem; then a process in the subsystem in
turn issues a process request to the Windows executive. Because the desired effect is
that the new process inherits characteristics of the client process and not of the serv-
er process, Windows enables the subsystem to specify the parent of the new process.
The new process then inherits the parent’s access token, quota limits, base priority,
and default processor affinity.

Symmetric Multiprocessing Support

Windows supports an SMP hardware configuration.The threads of any process, in-
cluding those of the executive, can run on any processor. In the absence of affinity
restrictions, explained in the next paragraph, the microkernel assigns a ready
thread to the next available processor. This assures that no processor is idle or is
executing a lower-priority thread when a higher-priority thread is ready. Multiple
threads from the same process can be executing simultaneously on multiple
processors.

As a default, the microkernel uses the policy of soft affinity in assigning
threads to processors: The dispatcher tries to assign a ready thread to the same
processor it last ran on. This helps reuse data still in that processor’s memory caches
from the previous execution of the thread. It is possible for an application to restrict
its thread execution to certain processors (hard affinity).

4.5 SOLARIS THREAD AND SMP MANAGEMENT

Solaris implements multilevel thread support designed to provide considerable flex-
ibility in exploiting processor resources.
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Multithreaded Architecture

Solaris makes use of four separate thread-related concepts:

• Process: This is the normal UNIX process and includes the user’s address
space, stack, and process control block.

• User-level threads: Implemented through a threads library in the address
space of a process, these are invisible to the OS. A user-level thread (ULT)10 is
a user-created unit of execution within a process.

• Lightweight processes: A lightweight process (LWP) can be viewed as a map-
ping between ULTs and kernel threads. Each LWP supports ULT and maps to
one kernel thread. LWPs are scheduled by the kernel independently and may
execute in parallel on multiprocessors.

• Kernel threads: These are the fundamental entities that can be scheduled and
dispatched to run on one of the system processors.

Figure 4.15 illustrates the relationship among these four entities. Note that there
is always exactly one kernel thread for each LWP. An LWP is visible within a process
to the application. Thus, LWP data structures exist within their respective process
address space. At the same time, each LWP is bound to a single dispatchable kernel
thread, and the data structure for that kernel thread is maintained within the kernel’s
address space.

A process may consists of a single ULT bound to a single LWP. In this case, there
is a single thread of execution, corresponding to a traditional UNIX process. When
concurrency is not required within a single process, an application uses this process
structure. If an application requires concurrency, its process contains multiple threads,
each bound to a single LWP, which in turn are each bound to a single kernel thread.

10Again, the acronym ULT is unique to this book and is not found in the Solaris literature.
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Figure 4.15 Processes and Threads in Solaris [MCDO07]

M04_STAL6329_06_SE_C04.QXD  2/13/08  2:02 PM  Page 191



192 CHAPTER 4 / THREADS, SMP,AND MICROKERNELS

In addition, there are kernel threads that are not associated with LWPs. The
kernel creates, runs, and destroys these kernel threads to execute specific system
functions. The use of kernel threads rather than kernel processes to implement sys-
tem functions reduces the overhead of switching within the kernel (from a process
switch to a thread switch).

Motivation

The three-level thread structure (ULT, LWP, kernel thread) in Solaris is intended to
facilitate thread management by the OS and to provide a clean interface to applica-
tions.The ULT interface can be a standard thread library.A defined ULT maps onto
a LWP, which is managed by the OS and which has defined states of execution, de-
fined subsequently. An LWP is bound to a kernel thread with a one-to-one corre-
spondence in execution states. Thus, concurrency and execution is managed at the
level of the kernel thread.

In addition, an application has access to hardware through an application pro-
gramming interface (API) consisting of system calls. The API allows the user to
invoke kernel services to perform privileged tasks on behalf of the calling process,
such as read or write a file, issue a control command to a device, create a new
process or thread, allocate memory for the process to use, and so on.

Process Structure

Figure 4.16 compares, in general terms, the process structure of a traditional UNIX
system with that of Solaris. On a typical UNIX implementation, the process structure
includes the process ID; the user IDs; a signal dispatch table, which the kernel uses to
decide what to do when sending a signal to a process; file descriptors, which describe
the state of files in use by this process; a memory map, which defines the address
space for this process; and a processor state structure, which includes the kernel stack
for this process. Solaris retains this basic structure but replaces the processor state
block with a list of structures containing one data block for each LWP.

The LWP data structure includes the following elements:

• An LWP identifier
• The priority of this LWP and hence the kernel thread that supports it
• A signal mask that tells the kernel which signals will be accepted
• Saved values of user-level registers (when the LWP is not running)
• The kernel stack for this LWP, which includes system call arguments, results,

and error codes for each call level
• Resource usage and profiling data
• Pointer to the corresponding kernel thread
• Pointer to the process structure

Thread Execution

Figure 4.17 shows a simplified view of both thread execution states. These states
reflect the execution status of both a kernel thread and the LWP bound to it. As
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mentioned, some kernel threads are not associated with an LWP; the same execution
diagram applies. The states are as follows:

• RUN: The thread is runnable; that is, the thread is ready to execute.
• ONPROC: The thread is executing on a processor.
• SLEEP: The thread is blocked.
• STOP: The thread is stopped.
• ZOMBIE: The thread has terminated.
• FREE: Thread resources have been released and the thread is awaiting

removal from the OS thread data structure.

A thread moves from ONPROC to RUN if it is preempted by a higher-priority
thread or because of time-slicing. A thread moves from ONPROC to SLEEP if it is
blocked and must await an event to return the RUN state. Blocking occurs if the
thread invokes a system call and must wait for the system service to be performed.
A thread enters the STOP state if its process is stopped; this might be done for de-
bugging purposes.

Process ID

UNIX process structure

User IDs

Signal dispatch table

File descriptors

Memory map

Priority
Signal mask

Registers

STACK

LWP ID

Processor state

Process ID

Solaris process structure

User IDs

Signal dispatch table

File descriptors

LWP 1

LWP ID

LWP 2

Memory map

Priority
Signal mask

Registers

STACK

Priority
Signal mask

Registers

STACK

Figure 4.16 Process Structure in Traditional UNIX and Solaris [LEW196]

M04_STAL6329_06_SE_C04.QXD  2/13/08  2:02 PM  Page 193



194 CHAPTER 4 / THREADS, SMP,AND MICROKERNELS

Interrupts as Threads

Most operating systems contain two fundamental forms of concurrent activity:
processes and interrupts. Processes (or threads) cooperate with each other and man-
age the use of shared data structures by means of a variety of primitives that enforce
mutual exclusion (only one process at a time can execute certain code or access cer-
tain data) and that synchronize their execution. Interrupts are synchronized by pre-
venting their handling for a period of time. Solaris unifies these two concepts into a
single model, namely kernel threads and the mechanisms for scheduling and execut-
ing kernel threads. To do this, interrupts are converted to kernel threads.

The motivation for converting interrupts to threads is to reduce overhead. In-
terrupt handlers often manipulate data shared by the rest of the kernel. Therefore,
while a kernel routine that accesses such data is executing, interrupts must be
blocked, even though most interrupts will not affect that data.Typically, the way this
is done is for the routine to set the interrupt priority level higher to block interrupts
and then lower the priority level after access is completed. These operations take
time.The problem is magnified on a multiprocessor system.The kernel must protect
more objects and may need to block interrupts on all processors.

The solution in Solaris can be summarized as follows:

1. Solaris employs a set of kernel threads to handle interrupts.As with any kernel
thread, an interrupt thread has its own identifier, priority, context, and stack.

2. The kernel controls access to data structures and synchronizes among interrupt
threads using mutual exclusion primitives, of the type discussed in Chapter 5.
That is, the normal synchronization techniques for threads are used in handling
interrupts.

IDL

thread_create() intr()

swtch()
syscall()

wakeup()

prun() pstop() exit() reapt()

preempt()

RUN

PINNED

ONPROC SLEEP

RUN ONPROC SLEEP

Figure 4.17 Solaris Thread States [MCDO07]
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3. Interrupt threads are assigned higher priorities than all other types of kernel
threads.

When an interrupt occurs, it is delivered to a particular processor and the
thread that was executing on that processor is pinned.A pinned thread cannot move
to another processor and its context is preserved; it is simply suspended until the in-
terrupt is processed. The processor then begins executing an interrupt thread. There
is a pool of deactivated interrupt threads available, so that a new thread creation is
not required. The interrupt thread then executes to handle the interrupt. If the han-
dler routine needs access to a data structure that is currently locked in some fashion
for use by another executing thread, the interrupt thread must wait for access to that
data structure. An interrupt thread can only be preempted by another interrupt
thread of higher priority.

Experience with Solaris interrupt threads indicates that this approach pro-
vides superior performance to the traditional interrupt-handling strategy [KLEI95].

4.6 LINUX PROCESS AND THREAD MANAGEMENT

Linux Tasks

A process, or task, in Linux is represented by a task_struct data structure. The
task_struct data structure contains information in a number of categories:

• State: The execution state of the process (executing, ready, suspended,
stopped, zombie). This is described subsequently.

WINDOWS/LINUX COMPARISON
Windows Linux

Processes are containers for the user-mode address
space, a general handle mechanism for referencing
kernel objects, and threads; Threads run in a process,
and are the schedulable entities

Processes are both containers and the schedulable
entities; processes can share address space and sys-
tem resources, making processes effectively usable as
threads

Processes are created by discrete steps which con-
struct the container for a new program and the first
thread; a fork() like native API exists, but only used
for POSIX compatibility

Processes created by making virtual copies with
fork() and then over-writing with exec() to run a new
program

Process handle table used to uniformly reference
kernel objects (representing processes, threads,
memory sections, synchronization, I/O devices, dri-
vers, open files, network connections, timers, kernel
transactions, etc)

Kernel objects referenced by ad hoc collection of
APIs, and mechanisms – including file descriptors for
open files and sockets and PIDs for processes and
process groups

Up to 16 million handles on kernel objects are sup-
ported per process

Up to 64 open files/sockets are supported per
process

Kernel is fully multi-threaded, with kernel preemp-
tion enabled on all systems in the original design

Few kernel processes used, and kernel preemption is
a recent feature

Many system services implemented using a
client/server computing, including the OS personality
subsystems that run in user-mode and communicate
using remote-procedure calls

Most services are implemented in the kernel, with the
exception of many networking functions
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and then the right fork. Unlike the semaphore solution, this monitor solution does
not suffer from deadlock, because only one process at a time may be in the monitor.
For example, the first philosopher process to enter the monitor is guaranteed that it
can pick up the right fork after it picks up the left fork before the next philosopher
to the right has a chance to seize its left fork, which is this philosopher’s right fork.

6.7 UNIX CONCURRENCY MECHANISMS

UNIX provides a variety of mechanisms for interprocessor communication and syn-
chronization. Here, we look at the most important of these:

• Pipes
• Messages
• Shared memory
• Semaphores
• Signals

Pipes, messages, and shared memory can be used to communicate data be-
tween processes, whereas semaphores and signals are used to trigger actions by
other processes.

Pipes

One of the most significant contributions of UNIX to the development of operat-
ing systems is the pipe. Inspired by the concept of coroutines [RITC84], a pipe is a
circular buffer allowing two processes to communicate on the producer-consumer
model. Thus, it is a first-in-first-out queue, written by one process and read by
another.

When a pipe is created, it is given a fixed size in bytes. When a process at-
tempts to write into the pipe, the write request is immediately executed if there is
sufficient room; otherwise the process is blocked. Similarly, a reading process is
blocked if it attempts to read more bytes than are currently in the pipe; otherwise
the read request is immediately executed. The OS enforces mutual exclusion: that
is, only one process can access a pipe at a time.

There are two types of pipes: named and unnamed. Only related processes
can share unnamed pipes, while either related or unrelated processes can share
named pipes.

Messages

A message is a block of bytes with an accompanying type. UNIX provides msgsnd
and msgrcv system calls for processes to engage in message passing. Associated
with each process is a message queue, which functions like a mailbox.

The message sender specifies the type of message with each message sent, and
this can be used as a selection criterion by the receiver. The receiver can either re-
trieve messages in first-in-first-out order or by type. A process will block when try-
ing to send a message to a full queue. A process will also block when trying to read

M06_STAL6329_06_SE_C06.QXD  2/21/08  9:29 PM  Page 286



6.7 / UNIX CONCURRENCY MECHANISMS 287

from an empty queue. If a process attempts to read a message of a certain type and
fails because no message of that type is present, the process is not blocked.

Shared Memory

The fastest form of interprocess communication provided in UNIX is shared mem-
ory. This is a common block of virtual memory shared by multiple processes.
Processes read and write shared memory using the same machine instructions they
use to read and write other portions of their virtual memory space. Permission is
read-only or read-write for a process, determined on a per-process basis. Mutual ex-
clusion constraints are not part of the shared-memory facility but must be provided
by the processes using the shared memory.

Semaphores

The semaphore system calls in UNIX System V are a generalization of the semWait
and semSignal primitives defined in Chapter 5; several operations can be performed
simultaneously and the increment and decrement operations can be values greater
than 1. The kernel does all of the requested operations atomically; no other process
may access the semaphore until all operations have completed.

A semaphore consists of the following elements:

• Current value of the semaphore
• Process ID of the last process to operate on the semaphore
• Number of processes waiting for the semaphore value to be greater than its

current value
• Number of processes waiting for the semaphore value to be zero

Associated with the semaphore are queues of processes blocked on that
semaphore.

Semaphores are actually created in sets, with a semaphore set consisting of
one or more semaphores. There is a semctl system call that allows all of the sema-
phore values in the set to be set at the same time. In addition, there is a sem_op sys-
tem call that takes as an argument a list of semaphore operations, each defined on
one of the semaphores in a set. When this call is made, the kernel performs the indi-
cated operations one at a time. For each operation, the actual function is specified
by the value sem_op. The following are the possibilities:

• If sem_op is positive, the kernel increments the value of the semaphore and
awakens all processes waiting for the value of the semaphore to increase.

• If sem_op is 0, the kernel checks the semaphore value. If the semaphore value
equals 0, the kernel continues with the other operations on the list. Otherwise,
the kernel increments the number of processes waiting for this semaphore to
be 0 and suspends the process to wait for the event that the value of the sema-
phore equals 0.

• If sem_op is negative and its absolute value is less than or equal to the sema-
phore value, the kernel adds sem_op (a negative number) to the semaphore
value. If the result is 0, the kernel awakens all processes waiting for the value
of the semaphore to equal 0.
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• If sem_op is negative and its absolute value is greater than the semaphore
value, the kernel suspends the process on the event that the value of the sema-
phore increases.

This generalization of the semaphore provides considerable flexibility in per-
forming process synchronization and coordination.

Signals

A signal is a software mechanism that informs a process of the occurrence of asyn-
chronous events.A signal is similar to a hardware interrupt but does not employ pri-
orities. That is, all signals are treated equally; signals that occur at the same time are
presented to a process one at a time, with no particular ordering.

Processes may send each other signals, or the kernel may send signals internal-
ly. A signal is delivered by updating a field in the process table for the process to
which the signal is being sent. Because each signal is maintained as a single bit, sig-
nals of a given type cannot be queued. A signal is processed just after a process
wakes up to run or whenever the process is preparing to return from a system call.A
process may respond to a signal by performing some default action (e.g., termina-
tion), executing a signal handler function, or ignoring the signal.

Table 6.2 lists signals defined for UNIX SVR4.

288 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

Table 6.2 UNIX Signals

Value Name Description

01 SIGHUP Hang up; sent to process when kernel assumes that the user of that process is doing
no useful work

02 SIGINT Interrupt

03 SIGQUIT Quit; sent by user to induce halting of process and production of core dump

04 SIGILL Illegal instruction

05 SIGTRAP Trace trap; triggers the execution of code for process tracing

06 SIGIOT IOT instruction

07 SIGEMT EMT instruction

08 SIGFPE Floating-point exception

09 SIGKILL Kill; terminate process

10 SIGBUS Bus error

11 SIGSEGV Segmentation violation; process attempts to access location outside its virtual ad-
dress space

12 SIGSYS Bad argument to system call

13 SIGPIPE Write on a pipe that has no  readers attached to it

14 SIGALRM Alarm clock; issued when a process wishes to receive a signal after a period of time

15 SIGTERM Software termination

16 SIGUSR1 User-defined signal 1

17 SIGUSR2 User-defined signal 2

18 SIGCHLD Death of a child

19 SIGPWR Power failure
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for this facility. The rmb() operation insures that no reads occur across the barrier
defined by the place of the rmb() in the code. Similarly, the wmb() operation in-
sures that no writes occur across the barrier defined by the place of the wmb() in
the code. The mb() operation provides both a load and store barrier.

Two important points to note about the barrier operations:

1. The barriers relate to machine instructions, namely loads and stores. Thus the
higher-level language instruction a = b involves both a load (read) from lo-
cation b and a store (write) to location a.

2. The rmb, wmb, and mb operations dictate the behavior of both the compiler
and the processor. In the case of the compiler, the barrier operation dictates
that the compiler not reorder instructions during the compile process. In the
case of the processor, the barrier operation dictates that any instructions pend-
ing in the pipeline before the barrier must be committed for execution before
any instructions encountered after the barrier.

The barrier() operation is a lighter-weight version of the mb() operation,
in that it only controls the compiler’s behavior. This would be useful if it is known
that the processor will not perform undesirable reorderings. For example, the Intel
x86 processors do not reorder writes.

The smp_rmb, smp_wmb, and smp_mb operations provide an optimization for
code that may be compiled on either a uniprocessor (UP) or a symmetric multi-
processor (SMP).These instructions are defined as the usual memory barriers for an
SMP, but for a UP, they are all treated only as compiler barriers. The smp_ opera-
tions are useful in situations in which the data dependencies of concern will only
arise in an SMP context.

6.9 SOLARIS THREAD SYNCHRONIZATION PRIMITIVES

In addition to the concurrency mechanisms of UNIX SVR4, Solaris supports four
thread synchronization primitives:

• Mutual exclusion (mutex) locks
• Semaphores
• Multiple readers, single writer (readers/writer) locks
• Condition variables

Solaris implements these primitives within the kernel for kernel threads; they
are also provided in the threads library for user-level threads. Figure 6.15 shows the
data structures for these primitives.The initialization functions for the primitives fill
in some of the data members. Once a synchronization object is created, there are es-
sentially only two operations that can be performed: enter (acquire lock) and re-
lease (unlock). There are no mechanisms in the kernel or the threads library to
enforce mutual exclusion or to prevent deadlock. If a thread attempts to access a
piece of data or code that is supposed to be protected but does not use the appro-
priate synchronization primitive, then such access occurs. If a thread locks an object
and then fails to unlock it, no kernel action is taken.
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All of the synchronization primitives require the existence of a hardware in-
struction that allows an object to be tested and set in one atomic operation.

Mutual Exclusion Lock

A mutex is used to ensure only one thread at a time can access the resource pro-
tected by the mutex. The thread that locks the mutex must be the one that unlocks
it.A thread attempts to acquire a mutex lock by executing the mutex_enter prim-
itive. If mutex_enter cannot set the lock (because it is already set by another
thread), the blocking action depends on type-specific information stored in the
mutex object. The default blocking policy is a spin lock: a blocked thread polls the
status of the lock while executing in a busy waiting loop. An interrupt-based block-
ing mechanism is optional. In this latter case, the mutex includes a turnstile id
that identifies a queue of threads sleeping on this lock.

The operations on a mutex lock are as follows:

mutex_enter() Acquires the lock, potentially blocking if it is already
held

mutex_exit() Releases the lock, potentially unblocking a waiter
mutex_tryenter() Acquires the lock if it is not already held

Figure 6.15 Solaris Synchronization Data Structures

(a) MUTEX lock

(b) Semaphore

(c) Reader/writer lock

(d) Condition variable

Owner (3 octets)

Lock (1 octet)

Type (1 octet)
wlock (1 octet)

Waiters (2 octets)

Waiters (2 octets)

Thread owner (4 octets)

Union (4 octets)
(statistic pointer or

number of write requests)

Type (1 octet)
wlock (1 octet)

Waiters (2 octets)

Count (4 octets)

Waiters (2 octets)

Type-specific info (4 octets)
(possibly a turnstile id,

lock type filler,
or statistics pointer)
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The mutex_tryenter() primitive provides a nonblocking way of perform-
ing the mutual exclusion function. This enables the programmer to use a busy-wait
approach for user-level threads, which avoids blocking the entire process because
one thread is blocked.

Semaphores

Solaris provides classic counting semaphores, with the following primitives:

sema_p() Decrements the semaphore, potentially blocking the
thread

sema_v( ) Increments the semaphore, potentially unblocking a waiting
thread

sema_tryp( ) Decrements the semaphore if blocking is not required

Again, the sema_tryp() primitive permits busy waiting.

Readers/Writer Lock

The readers/writer lock allows multiple threads to have simultaneous read-only ac-
cess to an object protected by the lock. It also allows a single thread to access the ob-
ject for writing at one time, while excluding all readers. When the lock is acquired
for writing it takes on the status of write lock:All threads attempting access for
reading or writing must wait. If one or more readers have acquired the lock, its sta-
tus is read lock. The primitives are as follows:

rw_enter() Attempts to acquire a lock as reader or writer.
rw_exit() Releases a lock as reader or writer.
rw_tryenter() Acquires the lock if blocking is not required.
rw_downgrade() A thread that has acquired a write lock converts it to

a read lock.Any waiting writer remains waiting until
this thread releases the lock. If there are no waiting
writers, the primitive wakes up any pending readers.

rw_tryupgrade() Attempts to convert a reader lock into a writer
lock.

Condition Variables

A condition variable is used to wait until a particular condition is true. Condition
variables must be used in conjunction with a mutex lock.This implements a monitor
of the type illustrated in Figure 6.14. The primitives are as follows:

cv_wait() Blocks until the condition is signaled
cv_signal() Wakes up one of the threads blocked in cv_wait()
cv_broadcast() Wakes up all of the threads blocked in cv_wait()

cv_wait() releases the associated mutex before blocking and reacquires it
before returning. Because reacquisition of the mutex may be blocked by other

Animation:
Solaris RW Lock
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threads waiting for the mutex, the condition that caused the wait must be retested.
Thus, typical usage is as follows:

mutex_enter(&m)
* *
while (some_condition) {
cv_wait(&cv, &m);

}
* *
mutex_exit(&m);

This allows the condition to be a complex expression, because it is protected
by the mutex.

6.10 WINDOWS CONCURRENCY MECHANISMS

Windows provides synchronization among threads as part of the object architecture.
The most important methods of synchronization are Executive dispatcher objects,
user mode critical sections, slim reader-writer locks, and condition variables. Dis-
patcher objects make use of wait functions.We first describe wait functions and then
look at the synchronization methods.

Wait Functions

The wait functions allow a thread to block its own execution. The wait functions do
not return until the specified criteria have been met. The type of wait function deter-
mines the set of criteria used. When a wait function is called, it checks whether the
wait criteria have been met. If the criteria have not been met, the calling thread en-
ters the wait state. It uses no processor time while waiting for the criteria to be met.

The most straightforward type of wait function is one that waits on a single ob-
ject. The WaitForSingleObject function requires a handle to one synchroniza-
tion object. The function returns when one of the following occurs:

• The specified object is in the signaled state.
• The time-out interval elapses.The time-out interval can be set to INFINITE to

specify that the wait will not time out.

Dispatcher Objects

The mechanism used by the Windows Executive to implement synchronization fa-
cilities is the family of dispatcher objects, which are listed with brief descriptions in
Table 6.7.

The first five object types in the table are specifically designed to support syn-
chronization. The remaining object types have other uses but also may be used for
synchronization.

Each dispatcher object instance can be in either a signaled or unsignaled state.A
thread can be blocked on an object in an unsignaled state; the thread is released when
the object enters the signaled state.The mechanism is straightforward:A thread issues
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Another approach is to adapt the clock page replacement algorithm described
earlier (Figure 8.16). [CARR84] describes a technique, using a global scope, that
involves monitoring the rate at which the pointer scans the circular buffer of frames. If
the rate is below a given lower threshold, this indicates one or both of two circumstances:

1. Few page faults are occurring, resulting in few requests to advance the pointer.
2. For each request, the average number of frames scanned by the pointer is

small, indicating that there are many resident pages not being referenced and
are readily replaceable.

In both cases, the multiprogramming level can safely be increased. On the
other hand, if the pointer scan rate exceeds an upper threshold, this indicates either
a high fault rate or difficulty in locating replaceable pages, which implies that the
multiprogramming level is too high.

Process Suspension If the degree of multiprogramming is to be reduced, one
or more of the currently resident processes must be suspended (swapped out).
[CARR84] lists six possibilities:

• Lowest-priority process: This implements a scheduling policy decision and is
unrelated to performance issues.

• Faulting process: The reasoning is that there is a greater probability that the
faulting task does not have its working set resident, and performance would
suffer least by suspending it. In addition, this choice has an immediate payoff
because it blocks a process that is about to be blocked anyway and it elimi-
nates the overhead of a page replacement and I/O operation.

• Last process activated: This is the process least likely to have its working set
resident.

• Process with the smallest resident set: This will require the least future effort
to reload. However, it penalizes programs with strong locality.

• Largest process: This obtains the most free frames in an overcommitted mem-
ory, making additional deactivations unlikely soon.

• Process with the largest remaining execution window: In most process sched-
uling schemes, a process may only run for a certain quantum of time before
being interrupted and placed at the end of the Ready queue. This approxi-
mates a shortest-processing-time-first scheduling discipline.

As in so many other areas of operating system design, which policy to choose
is a matter of judgment and depends on many other design factors in the operating
system as well as the characteristics of the programs being executed.

8.3 UNIX AND SOLARIS MEMORY MANAGEMENT

Because UNIX is intended to be machine independent, its memory management
scheme will vary from one system to the next. Earlier versions of UNIX simply used
variable partitioning with no virtual memory scheme. Current implementations of
UNIX and Solaris make use of paged virtual memory.
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In SVR4 and Solaris, there are actually two separate memory management
schemes.The paging system provides a virtual memory capability that allocates page
frames in main memory to processes and also allocates page frames to disk block
buffers.Although this is an effective memory-management scheme for user processes
and disk I/O, a paged virtual memory scheme is less suited to managing the memory
allocation for the kernel. For this latter purpose, a kernel memory allocator is used.
We examine these two mechanisms in turn.

Paging System

Data Structures For paged virtual memory, UNIX makes use of a number of
data structures that, with minor adjustment, are machine independent (Figure 8.22
and Table 8.6):

• Page table: Typically, there will be one page table per process, with one entry
for each page in virtual memory for that process.

• Disk block descriptor: Associated with each page of a process is an entry in
this table that describes the disk copy of the virtual page.

• Page frame data table: Describes each frame of real memory and is indexed by
frame number. This table is used by the replacement algorithm.

• Swap-use table: There is one swap-use table for each swap device, with one
entry for each page on the device.

Most of the fields defined in Table 8.6 are self-explanatory. A few warrant fur-
ther comment. The Age field in the page table entry is an indication of how long it

(a) Page table entry

(b) Disk block descriptor

(c) Page frame data table entry

(d) Swap-use table entry

Reference
count

Page/storage
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Figure 8.22 UNIX SVR4 Memory Management Formats
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Table 8.6 UNIX SVR4 Memory Management Parameters

Page Table Entry

Page frame number
Refers to frame in real memory.

Age
Indicates how long the page has been in memory without being referenced. The length and contents of
this field are processor dependent.

Copy on write
Set when more than one process shares a page. If one of the processes writes into the page, a separate
copy of the page must first be made for all other processes that share the page.This feature allows the
copy operation to be deferred until necessary and avoided in cases where it turns out not to be necessary.

Modify
Indicates page has been modified.

Reference
Indicates page has been referenced. This bit is set to zero when the page is first loaded and may be
periodically reset by the page replacement algorithm.

Valid
Indicates page is in main memory.

Protect
Indicates whether write operation is allowed.

Disk Block Descriptor

Swap device number
Logical device number of the secondary device that holds the corresponding page. This allows more
than one device to be used for swapping.

Device block number
Block location of page on swap device.

Type of storage
Storage may be swap unit or executable file. In the latter case, there is an indication as to whether the
virtual memory to be allocated should be cleared first.

Page Frame Data Table Entry

Page State
Indicates whether this frame is available or has an associated page. In the latter case, the status of the
page is specified: on swap device, in executable file, or DMA in progress.

Reference count
Number of processes that reference the page.

Logical device
Logical device that contains a copy of the page.

Block number
Block location of the page copy on the logical device.

Pfdata pointer
Pointer to other pfdata table entries on a list of free pages and on a hash queue of pages.

Swap-Use Table Entry

Reference count
Number of page table entries that point to a page on the swap device.

Page/storage unit number

Page identifier on storage unit.
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has been since a program referenced this frame. However, the number of bits and
the frequency of update of this field are implementation dependent. Therefore,
there is no universal UNIX use of this field for page replacement policy.

The Type of Storage field in the disk block descriptor is needed for the follow-
ing reason: When an executable file is first used to create a new process, only a por-
tion of the program and data for that file may be loaded into real memory. Later, as
page faults occur, new portions of the program and data are loaded. It is only at the
time of first loading that virtual memory pages are created and assigned to locations
on one of the devices to be used for swapping. At that time, the operating system is
told whether it needs to clear (set to 0) the locations in the page frame before the
first loading of a block of the program or data.

Page Replacement The page frame data table is used for page replacement.
Several pointers are used to create lists within this table. All of the available frames
are linked together in a list of free frames available for bringing in pages. When the
number of available frames drops below a certain threshold, the kernel will steal a
number of frames to compensate.

The page replacement algorithm used in SVR4 is a refinement of the clock
policy algorithm (Figure 8.16) known as the two-handed clock algorithm (Figure 8.23).
The algorithm uses the reference bit in the page table entry for each page in
memory that is eligible (not locked) to be swapped out. This bit is set to 0 when the
page is first brought in and set to 1 when the page is referenced for a read or write.
One hand in the clock algorithm, the fronthand, sweeps through the pages on the list
of eligible pages and sets the reference bit to 0 on each page. Sometime later, the
backhand sweeps through the same list and checks the reference bit. If the bit is set

Beginning
of page list

End of
page list
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Figure 8.23 Two-Handed Clock Page Replacement
Algorithm

M08_STAL6329_06_SE_C08.QXD  2/21/08  9:31 PM  Page 386



8.3 / UNIX AND SOLARIS MEMORY MANAGEMENT 387

to 1, then that page has been referenced since the fronthand swept by; these frames
are ignored. If the bit is still set to 0, then the page has not been referenced in the
time interval between the visit by fronthand and backhand; these pages are placed
on a list to be paged out.

Two parameters determine the operation of the algorithm:

• Scanrate: The rate at which the two hands scan through the page list, in pages
per second

• Handspread: The gap between fronthand and backhand

These two parameters have default values set at boot time based on the
amount of physical memory. The scanrate parameter can be altered to meet chang-
ing conditions. The parameter varies linearly between the values slowscan and
fastscan (set at configuration time) as the amount of free memory varies between
the values lotsfree and minfree. In other words, as the amount of free memory
shrinks, the clock hands move more rapidly to free up more pages. The handspread
parameter determines the gap between the fronthand and the backhand and there-
fore, together with scanrate, determines the window of opportunity to use a page
before it is swapped out due to lack of use.

Kernel Memory Allocator

The kernel generates and destroys small tables and buffers frequently during the
course of execution, each of which requires dynamic memory allocation. [VAHA96]
lists the following examples:

• The pathname translation routing may allocate a buffer to copy a pathname
from user space.

• The allocb() routine allocates STREAMS buffers of arbitrary size.
• Many UNIX implementations allocate zombie structures to retain exit status

and resource usage information about deceased processes.
• In SVR4 and Solaris, the kernel allocates many objects (such as proc struc-

tures, vnodes, and file descriptor blocks) dynamically when needed.

Most of these blocks are significantly smaller than the typical machine page size,
and therefore the paging mechanism would be inefficient for dynamic kernel mem-
ory allocation. For SVR4, a modification of the buddy system, described in Section 7.2,
is used.

In buddy systems, the cost to allocate and free a block of memory is low com-
pared to that of best-fit or first-fit policies [KNUT97]. However, in the case of ker-
nel memory management, the allocation and free operations must be made as fast
as possible. The drawback of the buddy system is the time required to fragment and
coalesce blocks.

Barkley and Lee at AT&T proposed a variation known as a lazy buddy system
[BARK89], and this is the technique adopted for SVR4. The authors observed that
UNIX often exhibits steady-state behavior in kernel memory demand; that is, the
amount of demand for blocks of a particular size varies slowly in time. Therefore, if
a block of size 2i is released and is immediately coalesced with its buddy into a block
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of size 2i!1, the kernel may next request a block of size 2i, which may necessitate
splitting the larger block again. To avoid this unnecessary coalescing and splitting,
the lazy buddy system defers coalescing until it seems likely that it is needed, and
then coalesces as many blocks as possible.

The lazy buddy system uses the following parameters:

Ni " current number of blocks of size 2i.
Ai " current number of blocks of size 2i that are allocated (occupied).
Gi " current number of blocks of size 2i that are globally free; these are blocks

that are eligible for coalescing; if the buddy of such a block becomes glob-
ally free, then the two blocks will be coalesced into a globally free block of
size 2i!1. All free blocks (holes) in the standard buddy system could be con-
sidered globally free.

Li " current number of blocks of size 2i that are locally free; these are blocks
that are not eligible for coalescing. Even if the buddy of such a block be-
comes free, the two blocks are not coalesced. Rather, the locally free blocks
are retained in anticipation of future demand for a block of that size.

Initial value of Di is 0
After an operation, the value of Di is updated as follows

(I) if the next operation is a block allocate request:
if there is any free block, select one to allocate

if the selected block is locally free
then Di :" Di ! 2
else  Di :" Di ! 1

otherwise
first get two blocks by splitting a larger one into two (recursive operation)
allocate one and mark the other locally free
Di remains unchanged (but D may change for other block sizes because 

of the recursive call)

(II) if the next operation is a block free request
Case Di # 2

mark it locally free and free it locally
Di " 2

Case Di " 1
mark it globally free and free it globally; coalesce if possible
Di " 0

Case Di " 0
mark it globally free and free it globally; coalesce if possible
select one locally free block of size 2i and free it globally; coalesce if possible
Di :" 0

Figure 8.24 Lazy Buddy System Algorithm
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The following relationship holds:

Ni ! Ai " Gi " Li

In general, the lazy buddy system tries to maintain a pool of locally free blocks
and only invokes coalescing if the number of locally free blocks exceeds a threshold.
If there are too many locally free blocks, then there is a chance that there will be a
lack of free blocks at the next level to satisfy demand. Most of the time, when a
block is freed, coalescing does not occur, so there is minimal bookkeeping and oper-
ational costs. When a block is to be allocated, no distinction is made between locally
and globally free blocks; again, this minimizes bookkeeping.

The criterion used for coalescing is that the number of locally free blocks of a
given size should not exceed the number of allocated blocks of that size (i.e., we
must have Li # Ai). This is a reasonable guideline for restricting the growth of
locally free blocks, and experiments in [BARK89] confirm that this scheme results
in noticeable savings.

To implement the scheme, the authors define a delay variable as follows:

Di ! Ai $ Li ! Ni $ 2Li $ Gi

Figure 8.24 shows the algorithm.

8.4 LINUX MEMORY MANAGEMENT

Linux shares many of the characteristics of the memory management schemes of
other UNIX implementations but has its own unique features. Overall, the Linux
memory-management scheme is quite complex [DUBE98]. In this section, we give a
brief overview of the two main aspects of Linux memory management: process
virtual memory, and kernel memory allocation.

Linux Virtual Memory

Virtual Memory Addressing Linux makes use of a three-level page table
structure, consisting of the following types of tables (each individual table is the size
of one page):

• Page directory: An active process has a single page directory that is the size of
one page. Each entry in the page directory points to one page of the page mid-
dle directory.The page directory must be in main memory for an active process.

• Page middle directory: The page middle directory may span multiple pages.
Each entry in the page middle directory points to one page in the page table.

• Page table: The page table may also span multiple pages. Each page table
entry refers to one virtual page of the process.

To use this three-level page table structure, a virtual address in Linux is viewed
as consisting of four fields (Figure 8.25). The leftmost (most significant) field is used
as an index into the page directory. The next field serves as an index into the page
middle directory. The third field serves as an index into the page table. The fourth
field gives the offset within the selected page of memory.
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At the end of the second time unit, process A has the highest priority. Note that the
pattern repeats: the kernel schedules the processes in order: A, B, A, C, A, B, and so
on. Thus, 50% of the processor is allocated to process A, which constitutes one
group, and 50% to processes B and C, which constitute another group.

9.3 TRADITIONAL UNIX SCHEDULING

In this section we examine traditional UNIX scheduling, which is used in both SVR3
and 4.3 BSD UNIX. These systems are primarily targeted at the time-sharing inter-
active environment. The scheduling algorithm is designed to provide good response
time for interactive users while ensuring that low-priority background jobs do not
starve. Although this algorithm has been replaced in modern UNIX systems, it is
worthwhile to examine the approach because it is representative of practical time-
sharing scheduling algorithms. The scheduling scheme for SVR4 includes an accom-
modation for real-time requirements, and so its discussion is deferred to Chapter 10.

The traditional UNIX scheduler employs multilevel feedback using round robin
within each of the priority queues.The system makes use of 1-second preemption.That
is, if a running process does not block or complete within 1 second, it is preempted. Pri-
ority is based on process type and execution history.The following formulas apply:

where
CPUj(i) ! measure of processor utilization by process j through interval i

Pj(i) ! priority of process j at beginning of interval i; lower values equal
higher priorities

Basej ! base priority of process j

nicej ! user-controllable adjustment factor

The priority of each process is recomputed once per second, at which time a
new scheduling decision is made. The purpose of the base priority is to divide all
processes into fixed bands of priority levels. The CPU and nice components are re-
stricted to prevent a process from migrating out of its assigned band (assigned by
the base priority level). These bands are used to optimize access to block devices
(e.g., disk) and to allow the operating system to respond quickly to system calls. In
decreasing order of priority, the bands are

• Swapper
• Block I/O device control
• File manipulation
• Character I/O device control
• User processes

Pj(i) = Basej +
CPUj(i)

2
+ nicej

CPUj(i) =
CPUj(i - 1)

2
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This hierarchy should provide the most efficient use of the I/O devices.
Within the user process band, the use of execution history tends to penalize
processor-bound processes at the expense of I/O-bound processes. Again, this
should improve efficiency. Coupled with the round-robin preemption scheme, the
scheduling strategy is well equipped to satisfy the requirements for general-purpose
time sharing.

An example of process scheduling is shown in Figure 9.17. Processes A, B,
and C are created at the same time with base priorities of 60 (we will ignore the nice
value). The clock interrupts the system 60 times per second and increments a
counter for the running process. The example assumes that none of the processes

Figure 9.17 Example of a Traditional UNIX Process Scheduling
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block themselves and that no other processes are ready to run. Compare this with
Figure 9.16.

9.4 SUMMARY

The operating system must make three types of scheduling decisions with respect to the exe-
cution of processes. Long-term scheduling determines when new processes are admitted to
the system. Medium-term scheduling is part of the swapping function and determines when a
program is brought partially or fully into main memory so that it may be executed. Short-
term scheduling determines which ready process will be executed next by the processor. This
chapter focuses on the issues relating to short-term scheduling.

A variety of criteria are used in designing the short-term scheduler. Some of these cri-
teria relate to the behavior of the system as perceived by the individual user (user oriented),
while others view the total effectiveness of the system in meeting the needs of all users (sys-
tem oriented). Some of the criteria relate specifically to quantitative measures of perfor-
mance, while others are more qualitative in nature. From a user’s point of view, response time
is generally the most important characteristic of a system, while from a system point of view,
throughput or processor utilization is important.

A variety of algorithms have been developed for making the short-term scheduling 
decision among all ready processes:

• First-come-first-served: Select the process that has been waiting the longest for service.
• Round robin: Use time slicing to limit any running process to a short burst of processor

time, and rotate among all ready processes.
• Shortest process next: Select the process with the shortest expected processing time,

and do not preempt the process.
• Shortest remaining time: Select the process with the shortest expected remaining

process time. A process may be preempted when another process becomes ready.
• Highest response ratio next: Base the scheduling decision on an estimate of normalized

turnaround time.
• Feedback: Establish a set of scheduling queues and allocate processes to queues based

on execution history and other criteria.

The choice of scheduling algorithm will depend on expected performance and on imple-
mentation complexity.

9.5 RECOMMENDED READING

Virtually every textbook on operating systems covers scheduling. Rigorous queuing analyses
of various scheduling policies are presented in [KLEI04] and [CONW67]. [DOWD93] pro-
vides an instructive performance analysis of various scheduling algorithms.

CONW67 Conway, R.; Maxwell, W.; and Miller, L. Theory of Scheduling. Reading, MA:
Addison-Wesley, 1967. Reprinted by Dover Publications, 2003.

DOWD93 Dowdy, L., and Lowery, C. P.S. to Operating Systems. Upper Saddle River, NJ:
Prentice Hall, 1993.

KLEI04 Kleinrock, L. Queuing Systems,Volume Three: Computer Applications. New York:
Wiley, 2004.
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Relationship to Real-Time Tasks Real-time tasks are handled in a different
manner from non-real-time tasks in the priority queues.The following considerations
apply:

1. All real-time tasks have only a static priority; no dynamic priority changes are
made.

2. SCHED_FIFO tasks do not have assigned timeslices. Such tasks are scheduled in
FIFO discipline. If a SHED_FIFO task is blocked, it returns to the same priority
queue in the active queue list when it becomes unblocked.

3. Although SCHED_RR tasks do have assigned timeslices, they also are never
moved to the expired queue list. When a SCHED_RR task exhaust its timeslice,
it is returned to its priority queue with the same timeslice value. Timeslice val-
ues are never changed.

The effect of these rules is that the switch between the active queue list and
the expired queue list only happens when there are no ready real-time tasks waiting
to execute.

10.4 UNIX SVR4 SCHEDULING

The scheduling algorithm used in UNIX SVR4 is a complete overhaul of the sched-
uling algorithm used in earlier UNIX systems (described in Section 9.3). The new
algorithm is designed to give highest preference to real-time processes, next-highest
preference to kernel-mode processes, and lowest preference to other user-mode
processes, referred to as time-shared processes.6

The two major modifications implemented in SVR4 are as follows:

1. The addition of a preemptable static priority scheduler and the introduction of
a set of 160 priority levels divided into three priority classes.

2. The insertion of preemption points. Because the basic kernel is not preemptive,
it can only be split into processing steps that must run to completion without in-
terruption. In between the processing steps, safe places known as preemption
points have been identified where the kernel can safely interrupt processing and
schedule a new process.A safe place is defined as a region of code where all ker-
nel data structures are either updated and consistent or locked via a semaphore.

Figure 10.13 illustrates the 160 priority levels defined in SVR4. Each process is
defined to belong to one of three priority classes and is assigned a priority level
within that class. The classes are as follows:

• Real time (159–100): Processes at these priority levels are guaranteed to be
selected to run before any kernel or time-sharing process. In addition, real-time
processes can make use of preemption points to preempt kernel processes and
user processes.

• Kernel (99–60): Processes at these priority levels are guaranteed to be selected
to run before any time-sharing process but must defer to real-time processes.

6Time-shared processes are the processes that correspond to users in a traditional time-sharing system.
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• Time-shared (59–0): The lowest-priority processes, intended for user applica-
tions other than real-time applications.

Figure 10.14 indicates how scheduling is implemented in SVR4. A dispatch
queue is associated with each priority level, and processes at a given priority level
are executed in round-robin fashion. A bit-map vector, dqactmap, contains one bit
for each priority level; the bit is set to one for any priority level with a nonempty
queue. Whenever a running process leaves the Running state, due to a block, times-
lice expiration, or preemption, the dispatcher checks dqactmap and dispatches a
ready process from the highest-priority nonempty queue. In addition, whenever a
defined preemption point is reached, the kernel checks a flag called kprunrun. If
set, this indicates that at least one real-time process is in the Ready state, and the
kernel preempts the current process if it is of lower priority than the highest-priority
real-time ready process.

Within the time-sharing class, the priority of a process is variable. The sched-
uler reduces the priority of a process each time it uses up a time quantum, and it
raises its priority if it blocks on an event or resource. The time quantum allocated to
a time-sharing process depends on its priority, ranging from 100 ms for priority 0 to
10 ms for priority 59. Each real-time process has a fixed priority and a fixed time
quantum.
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Figure 10.13 SVR4 Priority Classses
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and one for IBM mainframe operating systems [SMIT85]. Figure 11.11 shows re-
sults for simulation studies of the frequency-based replacement algorithm. A com-
parison of the two figures points out one of the risks of this sort of performance
assessment. The figures appear to show that LRU outperforms the frequency-based
replacement algorithm. However, when identical reference patterns using the same
cache structure are compared, the frequency-based replacement algorithm is supe-
rior. Thus, the exact sequence of reference patterns, plus related design issues such
as block size, will have a profound influence on the performance achieved.

11.8 UNIX SVR4 I/O

In UNIX, each individual I/O device is associated with a special file. These are man-
aged by the file system and are read and written in the same manner as user data
files.This provides a clean, uniform interface to users and processes.To read from or
write to a device, read and write requests are made for the special file associated
with the device.

Figure 11.12 illustrates the logical structure of the I/O facility. The file subsys-
tem manages files on secondary storage devices. In addition, it serves as the process
interface to devices, because these are treated as files.
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There are two types of I/O in UNIX: buffered and unbuffered. Buffered I/O
passes through system buffers, whereas unbuffered I/O typically involves the DMA
facility, with the transfer taking place directly between the I/O module and the
process I/O area. For buffered I/O, two types of buffers are used: system buffer
caches and character queues.

Buffer Cache

The buffer cache in UNIX is essentially a disk cache. I/O operations with disk are
handled through the buffer cache. The data transfer between the buffer cache and
the user process space always occurs using DMA. Because both the buffer cache
and the process I/O area are in main memory, the DMA facility is used in this case
to perform a memory-to-memory copy. This does not use up any processor cycles,
but it does consume bus cycles.

To manage the buffer cache, three lists are maintained:

• Free list: List of all slots in the cache (a slot is referred to as a buffer in UNIX;
each slot holds one disk sector) that are available for allocation

• Device list: List of all buffers currently associated with each disk
• Driver I/O queue: List of buffers that are actually undergoing or waiting for

I/O on a particular device

All buffers should be on the free list or on the driver I/O queue list. A buffer,
once associated with a device, remains associated with the device even if it is on the
free list, until is actually reused and becomes associated with another device. These
lists are maintained as pointers associated with each buffer rather than physically
separate lists.

When a reference is made to a physical block number on a particular device,
the operating system first checks to see if the block is in the buffer cache. To mini-
mize the search time, the device list is organized as a hash table, using a technique
similar to the overflow with chaining technique discussed in Appendix 8A (Figure
8.27b). Figure 11.13 depicts the general organization of the buffer cache. There is a
hash table of fixed length that contains pointers into the buffer cache. Each refer-
ence to a (device#, block#) maps into a particular entry in the hash table. The

Figure 11.12 UNIX I/O
Structure
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File subsystem

Device drivers
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pointer in that entry points to the first buffer in the chain. A hash pointer associ-
ated with each buffer points to the next buffer in the chain for that hash table
entry. Thus, for all (device#, block#) references that map into the same hash table
entry, if the corresponding block is in the buffer cache, then that buffer will be in
the chain for that hash table entry. Thus, the length of the search of the buffer
cache is reduced by a factor of on the order of N, where N is the length of the hash
table.

For block replacement, a least-recently-used algorithm is used: After a buffer
has been allocated to a disk block, it cannot be used for another block until all other
buffers have been used more recently.The free list preserves this least-recently-used
order.

Character Queue

Block-oriented devices, such as disk and USB keys, can be effectively served by the
buffer cache. A different form of buffering is appropriate for character-oriented de-
vices, such as terminals and printers. A character queue is either written by the I/O
device and read by the process or written by the process and read by the device. In
both cases, the producer/consumer model introduced in Chapter 5 is used. Thus,
character queues may only be read once; as each character is read, it is effectively
destroyed. This is in contrast to the buffer cache, which may be read multiple times
and hence follows the readers/writers model (also discussed in Chapter 5).
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Unbuffered I/O

Unbuffered I/O, which is simply DMA between device and process space, is always
the fastest method for a process to perform I/O. A process that is performing
unbuffered I/O is locked in main memory and cannot be swapped out. This reduces
the opportunities for swapping by tying up part of main memory, thus reducing the
overall system performance. Also, the I/O device is tied up with the process for the
duration of the transfer, making it unavailable for other processes.

UNIX Devices

Among the categories of devices recognized by UNIX are the following:

• Disk drives
• Tape drives
• Terminals
• Communication lines
• Printers

Table 11.5 shows the types of I/O suited to each type of device. Disk drives are
heavily used in UNIX, are block oriented, and have the potential for reasonable high
throughput.Thus, I/O for these devices tends to be unbuffered or via buffer cache.Tape
drives are functionally similar to disk drives and use similar I/O schemes.

Because terminals involve relatively slow exchange of characters, terminal I/O
typically makes use of the character queue. Similarly, communication lines require
serial processing of bytes of data for input or output and are best handled by character
queues. Finally, the type of I/O used for a printer will generally depend on its speed.
Slow printers will normally use the character queue, while a fast printer might employ
unbuffered I/O.A buffer cache could be used for a fast printer. However, because data
going to a printer are never reused, the overhead of the buffer cache is unnecessary.

11.9 LINUX I/O

In general terms, the Linux I/O kernel facility is very similar to that of other UNIX
implementation, such as SVR4. The Linux kernel associates a special file with each
I/O device driver. Block, character, and network devices are recognized. In this sec-
tion, we look at several features of the Linux I/O facility.

Table 11.5 Device I/O in UNIX

Unbuffered I/O Buffer Cache Character Queue

Disk drive X X

Tape drive X X

Terminals X

Communication lines X

Printers X X
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• Subject: An entity capable of accessing objects. Generally, the concept of
subject equates with that of process. Any user or application actually gains ac-
cess to an object by means of a process that represents that user or application.

• Object: Anything to which access is controlled. Examples include files, por-
tions of files, programs, segments of memory, and software objects (e.g., Java
objects).

• Access right: The way in which an object is accessed by a subject. Examples
are read, write, execute, and functions in software objects.

One dimension of the matrix consists of identified subjects that may attempt
data access.Typically, this list will consist of individual users or user groups, although
access could be controlled for terminals, hosts, or applications instead of or in addi-
tion to users. The other dimension lists the objects that may be accessed. At the
greatest level of detail, objects may be individual data fields. More aggregate group-
ings, such as records, files, or even the entire database, may also be objects in the ma-
trix. Each entry in the matrix indicates the access rights of that subject for that
object.

In practice, an access matrix is usually sparse and is implemented by decompo-
sition in one of two ways. The matrix may be decomposed by columns, yielding
access control lists (Figure 12.13b). Thus for each object, an access control list lists
users and their permitted access rights.The access control list may contain a default,
or public, entry.This allows users that are not explicitly listed as having special rights
to have a default set of rights. Elements of the list may include individual users as
well as groups of users.

Decomposition by rows yields capability tickets (Figure 12.13c). A capability
ticket specifies authorized objects and operations for a user. Each user has a number
of tickets and may be authorized to loan or give them to others. Because tickets may
be dispersed around the system, they present a greater security problem than access
control lists. In particular, the ticket must be unforgeable. One way to accomplish
this is to have the operating system hold all tickets on behalf of users. These tickets
would have to be held in a region of memory inaccessible to users.

Network considerations for data-oriented access control parallel those for
user-oriented access control. If only certain users are permitted to access certain
items of data, then encryption may be needed to protect those items during trans-
mission to authorized users. Typically, data access control is decentralized, that is,
controlled by host-based database management systems. If a network database
server exists on a network, then data access control becomes a network function.

12.8 UNIX FILE MANAGEMENT

In the UNIX file system, six types of files are distinguished:

• Regular, or ordinary: Contains arbitrary data in zero or more data blocks.
Regular files contain information entered in them by a user, an application
program, or a system utility program. The file system does not impose any in-
ternal structure to a regular file but treats it as a stream of bytes.
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• Directory: Contains a list of file names plus pointers to associated inodes
(index nodes), described later. Directories are hierarchically organized (Figure
12.4). Directory files are actually ordinary files with special write protection
privileges so that only the file system can write into them, while read access is
available to user programs.

• Special: Contains no data, but provides a mechanism to map physical devices
to file names. The file names are used to access peripheral devices, such as ter-
minals and printers. Each I/O device is associated with a special file, as dis-
cussed in Section 11.8.

• Named pipes: As discussed in Section 6.7, a pipe is an interprocess communi-
cations facility. A pipe file buffers data received in its input so that a process
that reads from the pipe’s output receives the data on a first-in-first-out basis.

• Links: In essence, a link is an alternative file name for an existing file.
• Symbolic links: This is a data file that contains the name of the file it is

linked to.

In this section, we are concerned with the handling of ordinary files, which cor-
respond to what most systems treat as files.

Inodes

Modern UNIX operating systems support multiple file systems but map all of these
into a uniform underlying system for supporting file systems and allocating disk
space to files. All types of UNIX files are administered by the OS by means of in-
odes. An inode (index node) is a control structure that contains the key information
needed by the operating system for a particular file. Several file names may be asso-
ciated with a single inode, but an active inode is associated with exactly one file, and
each file is controlled by exactly one inode.

The attributes of the file as well as its permissions and other control informa-
tion are stored in the inode.The exact inode structure varies from one UNIX imple-
mentation to another.The FreeBSD inode structure, shown in Figure 12.14, includes
the following data elements:

• The type and access mode of the file
• The file’s owner and group-access identifiers
• The time that the file was created, when it was most recently read and written,

and when its inode was most recently updated by the system
• The size of the file in bytes
• A sequence of block pointers, explained in the next subsection
• The number of physical blocks used by the file, including blocks used to hold

indirect pointers and attributes
• The number of directory entries the reference the file
• The kernel and user setable flags that describe the characteristics of the file
• The generation number of the file (a randomly selected number assigned to

the inode each time that the latter is allocated to a new file; the generation
number is used to detect references to deleted files)
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• The blocksize of the data blocks referenced by the inode (typically the same
as, but sometimes larger than, the file system blocksize)

• The size of the extended attribute information
• Zero or more extended attribute entries

The blocksize value is typically the same as, but sometimes larger than, the file
system blocksize. On traditional UNIX systems, a fixed blocksize of 512 bytes was
used. FreeBSD has a minimum blocksize of 4096 bytes (4 Kbytes); the blocksize can
be any power of 2 greater than or equal to 4096. For typical file systems, the block-
size is 8 Kbytes or 16 Kbytes. The default FreeBSD blocksize is 16 Kbytes.

Figure 12.14 Structure of FreeBSD inode and File
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Extended attribute entries are variable-length entries used to store auxiliary
data that is separate from the contents of the file. The first two extended attributes
defined for FreeBSD deal with security. The first of these support access control
lists; this is described in Chapter 15.The second defined extended attribute supports
the use of security labels, which are part of what is known as a mandatory access
control scheme, also described in Chapter 15.

On the disk, there is an inode table, or inode list, that contains the inodes of all
the files in the file system.When a file is opened, its inode is brought into main mem-
ory and stored in a memory-resident inode table.

File Allocation

File allocation is done on a block basis.Allocation is dynamic, as needed, rather than
using preallocation. Hence, the blocks of a file on disk are not necessarily contigu-
ous. An indexed method is used to keep track of each file, with part of the index
stored in the inode for the file. In all UNIX implementations, the inode includes a
number of direct pointers and three indirect pointers (single, double, triple).

The FreeBSD inode includes 120 bytes of address information that is orga-
nized as fifteen 64-bit addresses, or pointers. The first 12 addresses point to the first
12 data blocks of the file. If the file requires more than 12 data blocks, one or more
levels of indirection is used as follows:

• The thirteenth address in the inode points to a block on disk that contains the
next portion of the index. This is referred to as the single indirect block. This
block contains the pointers to succeeding blocks in the file.

• If the file contains more blocks, the fourteenth address in the inode points to a
double indirect block. This block contains a list of addresses of additional sin-
gle indirect blocks. Each of single indirect blocks, in turn, contains pointers to
file blocks.

• If the file contains still more blocks, the fifteenth address in the inode points to
a triple indirect block that is a third level of indexing. This block points to ad-
ditional double indirect blocks.

All of this is illustrated in Figure 12.14. The total number of data blocks in a
file depends on the capacity of the fixed-size blocks in the system. In FreeBSD,
the minimum block size is 4 Kbyte, and each block can hold a total of 512 block
addresses. Thus, the maximum size of a file with this block size is over 500 GB
(Table 12.4).

Table 12.4 Capacity of a FreeBSD File with 4 kByte Block Size

Level Number of Blocks Number of Bytes

Direct 12 48K

Single Indirect 512 2M

Double Indirect 512 ! 512 " 256K 1G

Triple Indirect 512 ! 256K " 128M 512G
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This scheme has several advantages:

1. The inode is of fixed size and relatively small and hence may be kept in main
memory for long periods.

2. Smaller files may be accessed with little or no indirection, reducing processing
and disk access time.

3. The theoretical maximum size of a file is large enough to satisfy virtually all
applications.

Directories

Directories are structured in a hierarchical tree. Each directory can contain files
and/or other directories. A directory that is inside another directory is referred to as
a subdirectory. As was mentioned, a directory is simply a file that contains a list of
file names plus pointers to associated inodes. Figure 12.15 shows the overall struc-
ture. Each directory entry (dentry) contains a name for the associated file or subdi-
rectory plus an integer called the i-number (index number). When the file or
directory is accessed, its i-number is used as an index into the inode table.

Volume Structure

A UNIX file system resides on a single logical disk or disk partition and is laid out
with the following elements:

Figure 12.15 UNIX Directories and Inodes
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• Boot block: Contains code required to boot the operating system
• Superblock: Contains attributes and information about the file system, such

as partition size, and inode table size
• Inode table: The collection of inodes for each file
• Data blocks: Storage space available for data files and subdirectories

Traditional UNIX File Access Control

Most UNIX systems depend on, or at least are based on, the file access control
scheme introduced with the early versions of UNIX. Each UNIX user is assigned a
unique user identification number (user ID). A user is also a member of a primary
group, and possibly a number of other groups, each identified by a group ID. When
a file is created, it is designated as owned by a particular user and marked with that
user’s ID. It also belongs to a specific group, which initially is either its creator’s pri-
mary group, or the group of its parent directory if that directory has SetGID permis-
sion set. Associated with each file is a set of 12 protection bits. The owner ID, group
ID, and protection bits are part of the file’s inode.

Nine of the protection bits specify read, write, and execute permission for the
owner of the file, other members of the group to which this file belongs, and all
other users. These form a hierarchy of owner, group, and all others, with the highest
relevant set of permissions being used. Figure 12.16a shows an example in which
the file owner has read and write access; all other members of the file’s group have

Figure 12.16 UNIX File Access Control
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read access, and users outside the group have no access rights to the file. When ap-
plied to a directory, the read and write bits grant the right to list and to create/re-
name/delete files in the directory.4 The execute bit grants to right to search the
directory for a component of a filename.

The remaining three bits define special additional behavior for files or directo-
ries. Two of these are the “set user ID” (SetUID) and “set group ID” (SetGID) per-
missions. If these are set on an executable file, the operating system functions as
follows. When a user (with execute privileges for this file) executes the file, the sys-
tem temporarily allocates the rights of the user’s ID of the file creator, or the file’s
group, respectively, to those of the user executing the file. These are known as the
“effective user ID” and “effective group ID” and are used in addition to the “real
user ID” and “real group ID” of the executing user when making access control de-
cisions for this program. This change is only effective while the program is being ex-
ecuted. This feature enables the creation and use of privileged programs that may
use files normally inaccessible to other users. It enables users to access certain files
in a controlled fashion. Alternatively, when applied to a directory, the SetGID per-
mission indicates that newly created files will inherit the group of this directory. The
SetUID permission is ignored.

The final permission bit is the “Sticky” bit.When set on a file, this originally in-
dicated that the system should retain the file contents in memory following execu-
tion.This is no longer used.When applied to a directory, though, it specifies that only
the owner of any file in the directory can rename, move, or delete that file. This is
useful for managing files in shared temporary directories.

One particular user ID is designated as “superuser.” The superuser is exempt
from the usual file access control constraints and has systemwide access. Any pro-
gram that is owned by, and SetUID to, the “superuser” potentially grants unre-
stricted access to the system to any user executing that program. Hence great care is
needed when writing such programs.

This access scheme is adequate when file access requirements align with users
and a modest number of groups of users. For example, suppose a user wants to give
read access for file X to users A and B and read access for file Y to users B and C.We
would need at least two user groups, and user B would need to belong to both groups
in order to access the two files. However, if there are a large number of different
groupings of users requiring a range of access rights to different files, then a very large
number of groups may be needed to provide this. This rapidly becomes unwieldy and
difficult to manage, even if possible at all.5 One way to overcome this problem is to
use access control lists, which are provided in most modern UNIX systems.

A final point to note is that the traditional UNIX file access control scheme
implements a simple protection domain structure. A domain is associated with the
user, and switching the domain corresponds to changing the user ID temporarily.

4Note that the permissions that apply to a directory are distinct from those that apply to any file or direc-
tory it contains. The fact that a user has the right to write to the directory does not give the user the right
to write to a file in that directory. That is governed by the permissions of the specific file. The user would,
however, have the right to rename the file.
5Most UNIX systems impose a limit on the maximum number of groups any user may belong to, as well
as to the total number of groups possible on the system.
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Access Control Lists in UNIX

Many modern UNIX and UNIX-based operating systems support access control
lists, including FreeBSD, OpenBSD, Linux, and Solaris. In this section, we describe
the FreeBSD approach, but other implementations have essentially the same fea-
tures and interface. The feature is referred to as extended access control list, while
the traditional UNIX approach is referred to as minimal access control list.

FreeBSD allows the administrator to assign a list of UNIX user IDs and groups
to a file by using the setfacl command.Any number of users and groups can be associ-
ated with a file, each with three protection bits (read, write, execute), offering a flexible
mechanism for assigning access rights. A file need not have an ACL but may be pro-
tected solely by the traditional UNIX file access mechanism. FreeBSD files include an
additional protection bit that indicates whether the file has an extended ACL.

FreeBSD and most UNIX implementations that support extended ACLs use
the following strategy (e.g., Figure 12.16b):

1. The owner class and other class entries in the 9-bit permission field have the
same meaning as in the minimal ACL case.

2. The group class entry specifies the permissions for the owner group for this file.
These permissions represent the maximum permissions that can be assigned to
named users or named groups, other than the owning user. In this latter role, the
group class entry functions as a mask.

3. Additional named users and named groups may be associated with the file,
each with a 3-bit permission field. The permissions listed for a named user or
named group are compared to the mask field. Any permission for the named
user or named group that is not present in the mask field is disallowed.

When a process requests access to a file system object, two steps are per-
formed. Step 1 selects the ACL entry that most closely matches the requesting
process. The ACL entries are looked at in the following order: owner, named users,
(owning or named) groups, others. Only a single entry determines access. Step 2
checks if the matching entry contains sufficient permissions. A process can be a
member in more than one group; so more than one group entry can match. If any of
these matching group entries contain the requested permissions, one that contains
the requested permissions is picked (the result is the same no matter which entry is
picked). If none of the matching group entries contains the requested permissions,
access will be denied no matter which entry is picked.

12.9 LINUX VIRTUAL FILE SYSTEM

Linux includes a versatile and powerful file handling facility, designed to support a
wide variety of file management systems and file structures. The approach taken in
Linux is to make use of a virtual file system (VFS), which presents a single, uniform
file system interface to user processes. The VFS defines a common file model that is
capable of representing any conceivable file system’s general feature and behavior.
The VFS assumes that files are objects in a computer’s mass storage memory that
share basic properties regardless of the target file system or the underlying processor

M12_STAL6329_06_SE_C12.QXD  2/21/08  9:40 PM  Page 587


